
ECG

IST-2000-26473

Effective Computational Geometry for Curves and Surfaces

ECG Technical Report No. : ECG-TR-361200-02

EXACUS: Efficient and Exact Algorithms for Curves and
Surfaces

Eric Berberich
Arno Eigenwillig
Michael Hemmer

Susan Hert

Lutz Kettner
Kurt Mehlhorn
Joachim Reichel
Susanne Schmitt

Elmar Schömer
Dennis Weber
Nicola Wolpert

Deliverable: 36 12 00 (new, item 02)
Site: MPI
Month: 36

Project funded by the European Community
under the “Information Society Technologies”

Programme (1998–2002)





EXACUS: Efficient and Exact Algorithms for Curves and Surfaces∗

http://www.mpi-sb.mpg.de/projects/EXACUS/

Eric Berberich Arno Eigenwillig Michael Hemmer Susan Hert
Lutz Kettner Kurt Mehlhorn Joachim Reichel Susanne Schmitt

Elmar Schömer Dennis Weber Nicola Wolpert

Max-Planck-Institut für Informatik, Saarbrücken, Germany

July 15, 2005

Abstract

We present the first release of the C++ libraries of the Exacus project of the Max-Planck-
Institut für Informatik. We explain the structure of the libraries and the software design for the
numerics library and the sweep-line algorithm library in more detail.

Overview

Since April 2002, Exacus is a project at the Algorithms and Complexity Group (AG1) of the
Max-Planck-Institut für Informatik. We work on a set of C++ libraries for efficient and exact algo-
rithms for curves and surfaces. This work is part of the European Union’s ECG project (Effective
Computational Geometry for Curves and Surfaces).

Exacus is a collection of C++ libraries, see Figure 1 for their layered architecture and a brief
description. Our design follows the generic programming paradigm with C++ templates similar to
well established design principles, for example, in the Stl [MS94, Aus98] and in Cgal [FGK+00,
BKSV00].

We give more details for the NumeriX and the SweepX libraries below. The ConiX li-
brary contains the algorithm described in [BEH+02b] and ECG-TR-122103-01 [BEH+02a], but
considerably improved with ideas developed for the CubiX library as described in [EKSW04] and
ECG-TR-182202-01 [ESW02]. The improvements are a factor of ten and more in the running time.

The libraries consist currently of about 75000 lines of code including the documentation that
is embedded in the C++ source code. We use Doxygen to create the reference documentation.
Since generic programming is not very well supported with Doxygen, for example, documenting
requirements on template parameters, we use our own small post-processing script to document
concepts similar to classes in Doxygen.

∗Partially supported by the IST Programme of the EU as a Shared-cost RTD (FET Open) Project under Contract
No IST-2000-26473 (ECG - Effective Computational Geometry for Curves and Surfaces)

1



CnX:: ConiX QdX:: QuadriXCbX:: CubiX

SoX:: SweepX

NiX:: NumeriX

LiS:: Library Support

GMP Core LEDA CGALBoost Qt

Figure 1: Library layers of the Exacus project: At the bottom we have the external libraries that
we detect and can use in Exacus. Library Support provides the foundation, such as configuration
and memory management. NumeriX adds number type support, symbolic algebra and numerical
algorithms. SweepX contains a generic sweep line algorithm suitable for segments of all type
of curve arcs and boolean operations based on it. The top layer contains the three applications
pursued so far; ConiXand CubiXare applications for curves in the plane. QuadriX extends our
work to arrangements of quadric surfaces in space. This first Exacus software release contains
Library Support, NumeriX, SweepX, and ConiX.

We use Cvs for version control and distributed collaboration. Configuration and build man-
agement is done with the Gnu family of tools autoconf, automake, and libtool. The supported
compiler is g++ starting with version 3.1 and the supported platforms are Linux and Solaris. We
strive for C++ Standard conformance of our code, but experience shows that porting to more com-
pilers and platforms can sometimes be easy and sometimes not.

We detect a couple of other libraries during configuration. Exacus does not depend on these
libraries in various core parts of its functionality. However, in other parts, we did not reinvent the
wheel and depend on existing implementations. Generic programming allows us to stay flexible and
postpone the decision between several alternatives to the final user application code, for example,
the choice of number types. The other libraries are: Leda for its number types, the graph data
structure and others in the SweepX library, and a window for visualization in the ConiX appli-
cations. Cgal for its number types, kernel geometry, and the planar map, just recently supported
from the ConiX predicates with a new geometric traits class. Qt for visualization of the CubiX
applications. Gmp and Core for their number types. Boost for the interval arithmetic.

We run an automatic test-suite daily from Cvs based on our own scripts. We always maintain
a stable revision tagged PROVEN. New contributions are tagged CONJECTURE and—after a successful
run of the test-suite—they are marked PROVEN (after all our background is in theory ;-).

We have already released a prototype application based on the ConiX library1 and another
prototype application based on the CubiX library2. This is now our source code release of the
ConiX library and the layers below it. At the time of the writing of this report the release has alpha
status and we restrict the access to ECG project partners only. A few items in the documentation
and tutorial examples for ConiX will be added before making the beta release publicly available.

1http://www.mpi-sb.mpg.de/EXACUS/ConiX/
2http://www.mpi-sb.mpg.de/EXACUS/CubiX/

2



Figure 2: The number type concepts in
Exacus. The arcs show the refinement
relationship among number types. In
particular, each number type is a refine-
ment from the classical Stl concepts
Assignable, DefaultConstructible,
and EqualityComparable.

The license for the release will be the Q Public License version 1.0 (QPL) for most files with a
few exceptions in SweepX regarding the sweep-line algorithm that is derived from work in Leda.
For these exceptions we have special license conditions offered by Algorithmic Solutions Software
GmbH3.

The NumeriX Library

The NumeriX library contains number type support, symbolic algebra and numerical algorithms.
Its primary goal is not a stand-alone general purpose library in its area, but to optimally support
our applications. This gives us more freedom to specialize methods towards our applications and
experiment with different options.

In particular we highlight here the number type concepts we distinguish and the various traits
classes associated with number types. They allow us to write generic and flexible code with maximal
reuse. As a model example we discuss the polynomial class and the algebraic numbers in a bit more
detail. Some aspects of the NumeriX library that we just mention briefly here are linear algebra
classes and algorithms for determinants, Sylvester and Bezout matrices for resultants and sub-
resultants, linear system solver, the number type for quadratic extension fields, modular arithmetic,
and floating point filter support.

Figure 2 shows the refinement relationship among the number type concepts that we distinguish
in Exacus. The additional concept RealComparable is orthogonal to the other concepts.

The requirements on number type concepts come in three flavors: (1) We require an (explicit)
constructor from small integer values ranging from −128 to +127. It is used in particular to create
the zero and the one element. (2) We require suitable operator overloading for the different arith-
metic and comparison operators. We reserve the operator/() for the division without remainder
in a field. Other divisions, such as division with remainder, are provided in the third set of re-
quirements. (3) All other requirements are local to the NiX::NT traits<NT> class that provides
suitable specializations for each number type NT. For example, typename NiX::NT traits<NT>::
Algebra type refers to a tag that encodes the most refined concept that the number type NT fulfills,
e.g., NiX::Ring tag if it is a model of a Ring. Another example is typename NiX::NT traits<NT>::
Integral div, which must be a model of the standard Stl AdaptableBinaryFunction concept
that implements the integral division for that number type NT.

The number type concepts are in detail:
3http://www.algorithmic-solutions.com/

3



• RealComparable: (Orthogonal to the other number type concepts) Concept comprising
comparisons and related operations for number types representing real numbers. Requires
that NiX::NT traits<NT> contains suitable functors Abs, Sign, and Compare for a three-
valued comparison result, and all the comparison and equality operators for the type NT.

• RingWithoutDiv: The most basic number type concept; a ring with 0, 1, + , *, that
represents elements of an integral domain, i.e., a commutative ring with unity free of zero
divisors. A model of this concept is required to have a constructor from small integer values
and suitable operators.

• Ring: Concept of a ring with an integral division operation provided through the
AdaptableBinaryFunction functor NiX::NT traits::Integral div.

• UFDomain: The ring is a unique factorization domain (a.k.a. UFD or factorial ring), mean-
ing that every non-zero non-unit element has a factorization into irreducible elements (a.k.a.
prime elements) that is unique up to order and up to multiplication by invertible elements
(units). (An irreducible element is a non-unit ring element that cannot be factored fur-
ther into two non-unit elements.) In a UFD, any two elements, not both zero, possess a
greatest common divisor (gcd). It is computed by the AdaptableBinaryFunction functor
NiX::NT traits::Gcd.

• EuclideanRing: The ring affords a suitable notion of minimality of remainders such that
given x and y 6= 0 we obtain an (almost) unique solution to x = qy + r by demanding that a
solution (q, r) is chosen to minimize r. In particular, r is chosen to be 0 if possible. The most
prominent example of an Euclidean ring are the integers. Whenever both x and y are positive,
then it is conventional to choose the smallest positive remainder r. In other cases, there seems
to be no universally observed convention on how to choose the sign. (In particular, the ISO
C++ Standard fixes none for the modulo operation % on the builtin integral types.) This
concept requires that NiX::NT traits<NT> contains suitable functors Div, Mod, and Div mod
where the latter returns both, (q, r), together.

• Field: Concept of a field where every non-zero element has a multiplicative inverse, so,
NiX::NT traits::Integral div is defined for any divisor 6= 0. This functor is now also
required to be available with the global operator/.

• FieldWithSqrt: Concept for the field of algebraic expressions (FAE) limited to real square
root expressions. The corresponding AdaptableUnaryFunction functor is NiX::NT traits<
NT>::Sqrt.

The requirements on the small integer constructor and the operator definitions are fulfilled for all
suitable number types in our context that we know of. The NiX::NT traits class requirements are
easily provided for existing and new number types.

Realistically, we have currently only two main branches of number types that can fill our tax-
onomy of number types (in particular the FieldWithSqrt concept). These are the number types in
the Leda library [MN00], and the number types in Gmp [Gra96] plus the Core library [KLPY99].
We support both branches and provide the NiX::NT traits class specializations.

In addition to the NiX::NT traits class, we provide a couple of other traits classes, also in the
namespace NiX::, for more specialized functionality:

• Arithmetic traits is a set of compatible number types used to parameterize algorithms and
data structures. Compatibility means that conversions are defined where they make sense
mathematically, e.g. from integers to rationals.

4



• Fraction traits<NT> converts between fractional and integer representations, i.e., the nu-
merator and denominator of a fraction NT. It is useful in converting a polynomial with frac-
tional coefficients into a common integer divisor and a numerator polynomial with integer
coefficients, which allows certain operations of polynomials to be much faster.

• Scalar factor traits<NT> extracts common scalar factors from nested algebraic compound
objects NT like polynomials over one-root numbers with integer coefficients to simplify them.

• Modular traits<NT> maps a value of number type <NT> to its value of our modular arithmetic
type. It is used for the modular arithmetic filter of algebraic numbers.

The class Polynomial<NT> in NumeriX represents polynomials with coefficients of type NT. De-
pending on the capabilities of NT, the polynomial class adapts and picks the best implementation
for certain functions. For this, the polynomial class looks at the number type concept that the
actual argument for NT fulfills, and it uses the other traits classes for simplifying coefficients or
switching from fractional coefficients to integral coefficients and back. The number type NT must
be at least a model of the RingWithoutDiv concept. For all operations naturally involving division,
the Ring concept is required. Some functions need more than the Ring concept, for example, gcds
computed from polynomial remainder sequences require the NT to be of the Field or UFDomain con-
cept. In general, the generic implementation of the polynomial class encapsulates the distinction
between different variants of a functions at an early level and allows the reuse of generic higher-level
functions.

Template meta-programming is used to determine the Algebra type of Polynomial<NT> as a
function of NiX::NT traits<NT>::Algebra type according to the following table:

NT Polynomial<NT>

RingWithoutDiv RingWithoutDiv
Ring Ring
UFDomain UFDomain
EuclideanRing UFDomain
Field EuclideanRing
FieldWithSqrt EuclideanRing

The number type NT can itself be an instance of NiX::Polynomial, yielding a form of multivariate
polynomials. Some convenience functions help to make the bivariate case based on this represen-
tation more fluent to use.

Similarly, the NiX::Algebraic number class adapts to the number types used in its defining
polynomial. The related Real roots functor creates algebraic numbers for all real roots of a
polynomial at once. It links all algebraic numbers together, so that, for example, whenever one
number learns how to factorize the defining polynomial, all algebraic numbers of that polynomial
learn from that information.

The SweepX Library

The sweep-line algorithm as described in [BEH+02b, MN00, MN94] is at the core of the SweepX
library. It uses data structures from Leda for the y- and the x-structure, and for the output graph.
On top of the sweep line algorithm we have generalized polygons in the SweepX library, i.e., a
polygon representation that is closed under regularized boolean operations [MN94].

The sweep-line algorithm is a generic implementation that is independent of the geometric
primitives, for example, the degree of the curve. We implemented this using geometric traits
classes following the principles in Cgal [FGK+00]. Such a geometric traits class contains types for

5



the geometric objects and functors4 for the different geometric predicates and constructions needed
in the sweep. The types and functors are:

Types

• Point 2 used for end-points and intersection points of segments.

• Segment 2 used as curve segment in computing the arrangement.

We require for points and segments to be default-constructible and assignable. In addition, to be
able to make use of the Leda data structures, we also need a global ID Number function overloaded
for points and segments.

Predicates

• Compare xy 2 and Less xy 2 provide lexicographic comparison of two points, the former with
a three-valued return type and the latter as a boolean predicate.

• Is degenerate 2 tells true, if the segment is degenerate.

• Do overlap 2 determines if two curve segments share a continuous segment of the underlying
supporting curve.

• Compare y at x 2 determines the vertical placement of a point relative to a segment.

• Equal y at x 2 determines if a point lies on a segment (This functor can have a faster imple-
mentation than testing Compare y at x 2 for equality).

• Multiplicity of intersection computes the multiplicity of an intersection point between
two segments.

• Compare y right of point determines the ordering of two segments just after they both pass
through a common point.

Accessors and Constructions

• Source 2 returns the source point of a curve segment.

• Target 2 returns the target point of a curve segment.

• Construct segment 2 constructs a degenerate curve segment from a point.

• New endpoints 2 and New endpoints opposite 2 replace the endpoints of a curve segment
with new representations and return this new curve segment. The latter functor also reverses
the orientation of the segment. They are used in the initialization phase of the sweep-line al-
gorithm where equal end-points are identified and where the segments are oriented canonically
from left to right [MN00].

• Intersect 2 constructs all intersection points between two segments in lexicographical order.

• Intersect right of point 2 constructs the first intersection point between two segments
right of a given point. Used only for validity checking and when the intersection dictionary
for caching of already computed intersections is not used.

4Functors plus access functions that we omit here for brevity, see [FGK+00] for details.

6



With this well-specified interface it was easy to implement various models for this geometric traits
class: We have one model for straight line segments that allows the comparison of the generic
implementation in the SweepX library with the version in Leda that is specialized on straight line
segments only. We have another model for circular arcs, where we get away with a FieldWithSqrt
number type and do not need algebraic numbers. And of course, we have models for conic segments
and cubic curves. The current release contains only the code for conic arcs.

A newer part in the SweepX library is the GAPS module, which stands for Generic Algebraic
Points and Segments. It bridges the gap between the analysis of plane algebraic curves and pairs
of them on the one hand, and the notion of sweepable segments and points used in the geometric
traits class above. It consists mainly of class templates that are models of the Point 2, Segment 2
concepts, and models of the functors required in the above geometric traits class concept. The point
and segment class templates come in two flavours, one with and one without genericity assumptions
on the choice of coordinates. (The latter may eventually subsume the former.)

We also offer a geometric traits class for Cgal’s planar map with intersections. Since the traits
class is implemented as an adaptor for the GAPS module, we get immediately a traits class for
ConiX and CubiX.

The genericity of our implementation then supported the (preliminary) empirical study compar-
ing the different approaches for arrangements of curves developed in Cgal see ECG-TR-361200-
01 [FHW+04].

Acknowledgements

We would like to acknowledge contributions by Michael Seel and discussions with Sylvain Pion.

References

[Aus98] Matthew H. Austern. Generic Programming and the STL. Addison-Wesley, 1998.

[BEH+02a] E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, K. Mehlhorn, and E. Schömer. A
computational basis for conic arcs and boolean operations on conic polygons. Technical
Report ECG-TR-122103-01, MPI Saarbrücken, 2002. Submitted to ESA 2002.

[BEH+02b] Eric Berberich, Arno Eigenwillig, Michael Hemmer, Susan Hert, Kurt Mehlhorn, and
Elmar Schömer. A computational basis for conic arcs and boolean operations on conic
polygons. In Rolf Möhring and Rajeev Raman, editors, Algorithms - ESA 2002: 10th
Annual European Symposium, volume 2461 of Lecture Notes in Computer Science,
pages 174–186, Rome, Italy, September 2002. Springer.

[BKSV00] Hervé Brönnimann, Lutz Kettner, Stefan Schirra, and Remco Veltkamp. Applications
of the generic programming paradigm in the design of CGAL. In M. Jazayeri, R. Loos,
and D. Musser, editors, Generic Programming—Proceedings of a Dagstuhl Seminar,
LNCS 1766, pages 206–217. Springer-Verlag, 2000.

[EKSW04] Arno Eigenwillig, Lutz Kettner, Elmar Schömer, and Nicola Wolpert. Complete, exact,
and efficient computations with cubic curves. In Proc. 20th Annu. ACM Sympos.
Comput. Geom., 2004.

[ESW02] Arno Eigenwillig, Elmar Schömer, and Nicola Wolpert. Sweeping arrangements of
cubic segments exactly and efficiently. Technical Report ECG-TR-182202-01, MPI
Saarbrücken, 2002.

[FGK+00] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. On the design of
CGAL a computational geometry algorithms library. Softw. – Pract. Exp., 30(11):1167–
1202, 2000.

7



[FHW+04] E. Fogel, D. Halperin, R. Wein, S. Pion, M. Teillaud, I. Emiris, A. Kakargias,
E. Tsigaridas, E. Berberich, A. Eigenwillig, M. Hemmer, L. Kettner, K. Mehlhorn,
E. Schömer, and N. Wolpert. Preliminary empirical comparison of the performance
of constructing arrangements of curved arcs. Technical Report ECG-TR-361200-01,
Tel-Aviv University, INRIA Sophia-Antipolis, MPI Saarbrücken, 2004.

[Gra96] T. Granlund. GNU MP, The GNU Multiple Precision Arithmetic Library, version
2.0.2, June 1996.

[KLPY99] Vijay Karamcheti, Chen Li, Igor Pechtchanski, and Chee Yap. The CORE Library
Project, 1.2 edition, 1999. http://www.cs.nyu.edu/exact/core/.

[MN94] Kurt Mehlhorn and Stefan Näher. Implementation of a sweep line algorithm for the
straight line segment intersection problem. Report MPI-I-94-160, Max-Planck-Institut
Inform., Saarbrücken, Germany, 1994.

[MN00] Kurt Mehlhorn and Stefan Näher. LEDA: A Platform for Combinatorial and Geometric
Computing. Cambridge University Press, Cambridge, UK, 2000.

[MS94] David R. Musser and Alexander A. Stepanov. Algorithm-oriented generic libraries.
Software – Practice and Experience, 24(7):623–642, July 1994.

8


