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ABSTRACT
We analyze the performance of evolutionary algorithms on
various matroid optimization problems that encompass a
vast number of efficiently solvable as well as NP-hard combi-
natorial optimization problems (including many well-known
examples such as minimum spanning tree and maximum bi-
partite matching). We obtain very promising bounds on the
expected running time and quality of the computed solution.
Our results establish a better theoretical understanding of
why randomized search heuristics yield empirically good re-
sults for many real-world optimization problems.

Categories and Subject Descriptors
G.2.1 [Combinatorics]: Combinatorial algorithms; F.2.2
[Nonnumerical Algorithms and Problems]: Computa-
tions on discrete structures

General Terms
Theory, Algorithms, Performance

Keywords
evolutionary algorithms, matroids, minimum weight basis,
matroid intersection, randomized search heuristics

1. INTRODUCTION
Motivation. While evolutionary algorithms are known to
work (empirically) well for many optimization problems in
practice, a satisfying and rigorous mathematical analysis of
their performance is one of the main challenges in the area
of genetic and evolutionary computing. Interesting results
have been obtained for some important, isolated optimiza-
tion problems but a general theoretical explanation of the
behavior of evolutionary algorithms is still missing. The
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aim of this paper is to make progress in this direction. We
study the performance of evolutionary algorithms on a very
general class of combinatorial optimization problems and
obtain promising results on the running time and quality
of the computed solutions. A summary of our results to-
gether with an overview of the complexity of the considered
optimization problems can be found in Table 1.

Independence Systems and Matroids. Matroid theory
provides a framework in which a substantial class of prob-
lems in combinatorial optimization can be studied from a
unified perspective. Matroids form a special class of inde-
pendence systems that are given by a finite set E and a
family of subsets F ⊆ 2E such that F is closed under sub-
sets. The subsets contained in F are called independent and
a maximal independent subset is called a basis of the in-
dependence system. A precise definition of matroids along
with some important classical results is given in Section 2.

Many combinatorial optimization problems can be for-
mulated as follows: Given an independence system on a
weighted set E, find a basis of minimum (or maximum)
weight. We mention as an example the problem of find-
ing a stable set with maximum weight in a given graph with
weights on the nodes (here, the underlying independence
system is not a matroid).

A famous result by Rado [19], Gale [7], and Edmonds [4]
states that an independence system is a matroid if and only
if the greedy algorithm computes a minimum weight basis
for arbitrary weights on the elements of E. This algorithmic
characterization of matroids highlights their relevance in the
area of efficient algorithms and combinatorial optimization.

Examples of Matroids and First Results. Graphic ma-
troids are an important example of matroids where E is the
edge set of a graph G = (V, E) and a subset of edges is
independent if it does not contain a circuit. If the given
graph G is connected, the problem of finding a minimum
weight basis of the corresponding graphic matroid is the
minimum spanning tree problem. In the context of evolu-
tionary algorithms, Raidl and Julstrom [20] analyze dif-
ferent encodings for the minimum spanning tree problem
and propose to work with so-called edge sets. Neumann
and Wegener [16] study evolutionary algorithms for the
minimum spanning tree problem. They prove that two spe-
cific evolutionary algorithms, (1+1) EA and RLS, compute
a minimum spanning tree in expected polynomial time, i.e.,
O(|E|2(log |V | + log wmax)), where wmax denotes the maxi-
mum weight of any edge; moreover, they establish a lower
bound of Ω(|E|2 log |V |). In Section 3 we generalize this
result to arbitrary matroids (see also Table 1).



problem efficient algorithm known (1+1) EA and RLS
lower bound on

(1+1) EA and RLS

minimum weight basis O(|E| log |E|) O(|E|2(log r(E) + log wmax)) Ω(|E|2 log r(E)) [16]

unweighted matroid intersection O(|E|2.5)
(1− ε)-approximation in

O(|E|2d1/εe)
exponential [9]

weighted matroid intersection O(|E|2.5(log |E|+ log wmax))
1/2-approximation in

O(|E|4(log |E|+log wmax))
exponential [9]

intersection of p ≥ 3 matroids NP-hard [8]
1/p-approximation in

O(|E|p+2(log |E|+log wmax))
exponential

Table 1: A summary of results on various matroid optimization problems. The problems are described in
the first column. The second column gives the running time of known efficient algorithms. The third column
describes the results for (1+1) EA and (modifications of) RLS obtained in this paper. The last column gives
lower bounds on the running time of (1+1) EA and RLS for obtaining an optimal solution.

Another important example of matroids are linear ma-
troids where E is a set of vectors and a subset is indepen-
dent if the vectors contained in it are linearly independent.
Linear matroids occur, for example, in the minimum cycle
basis problem where the task is to find a minimum weight
basis of the cycle space of a given graph with weights on the
edges. This problem is an important building block in vari-
ous real-world optimization problems such as, for example,
in electrical networks, structural engineering, chemistry and
biochemistry, and in periodic timetabling; see, e.g., [15] for
details.

Matroid Intersection. Matroids have even more algo-
rithmic power than just that of the greedy method. Ed-
monds [3, 14] observed that also the (weighted) matroid
intersection problem can be solved efficiently. That is, a
maximum weight common independent set in two matroids
can be found in strongly polynomial time. The matroid in-
tersection problem has applications in many settings such
as, for example, edge connectivity [5], survivable network
design [1], constrained minimum spanning trees [12], and
multicast network codes [11].

The most prominent example of an optimization prob-
lem that can be formulated as a matroid intersection prob-
lem is the maximum weight matching problem in bipartite
graphs. Giel and Wegener [9, 10] analyze evolutionary
algorithms for the maximum matching problem (with unit
weights). They show that (1+1) EA and RLS are (ran-
domized) polynomial-time approximation schemes with an

expected runtime of O(|E|2d1/εe); moreover they construct
a class of bipartite graphs for which these algorithms need
an exponential expected running time until they find an op-
timal solution. Motivated by these results we prove in Sec-
tion 4 that (1+1) EA and RLS are polynomial-time approx-
imation schemes for the matroid intersection problem with
unit weights (see also Table 1).

Our result for the unweighted matroid intersection prob-
lem cannot be generalized easily to the weighted case and
also from the viewpoint of efficient algorithms it is known
that the weighted version of the problem is somewhat harder
than the unweighted problem. In Section 5 we prove that
(1+1) EA and a slightly modified version of RLS are 1

2
-

approximation algorithms for the weighted matroid inter-
section problem (see also Table 1).

NP-Hard Problems. The problem of finding a maximum-
size common independent set in three or more matroids is
NP-hard as finding a Hamiltonian circuit in a directed graph

is a special case [13]. On the other hand it is known that any
independence system can be represented as an intersection of
finitely many matroids and a vast number of combinatorial
optimization problem falls into this category. In Section 6
we prove that (1+1) EA and (an appropriately modified
version of) RLS are 1

p
-approximation algorithms for the NP-

hard problem to find a maximum-weight independent set in
the intersection of p ≥ 3 matroids (see also Table 1). Note
that the approximation ratio of 1

p
is the same as that of the

greedy algorithm [14].

2. PRELIMINARIES
We study in this paper the behavior of two simple evolu-

tionary algorithms, namely (1+1) EA and randomized local
search (RLS), which is sometimes also called local (1+1) EA.
Both algorithms operate on bitstrings of fixed length and
differ in the mutation operator. Initially, a bitstring s ∈
{0, 1}n is chosen randomly (whenever we speak of random-
ness, we mean uniform randomness). The mutation opera-
tors of (1+1) EA and RLS are defined as follows:

(1+1) EA: Obtain the bitstring s′ by flipping each bit
of s independently of the other bits with probability 1/n.

RLS: Choose b ∈ {0, 1} randomly. If b = 0, choose i ∈
{1, . . . , n} randomly and obtain s′ by flipping the i-th bit of
s. If b = 1, choose (i, j) ∈ {(k, l) | 1 ≤ k < l ≤ n} randomly
and obtain s′ by flipping the i-th and j-th bit of s.

The current search point s is replaced by s′ if the fitness
value of s′ is better than or equal to that of s. This proce-
dure repeats until a stopping criterion is met. In this paper
we analyze the expected number of steps until we reach a
certain fitness value corresponding to the problem solution.

We shall now give the definition of matroids as well as
some well-known properties used in this paper. See [14],
[18], or [21], for a more detailed discussion.

Definition 2.1. Let E be a finite set and F ⊆ 2E. The
pair M = (E, F) is called a matroid if

(i) ∅ ∈ F,
(ii) ∀X ⊆ Y ∈ F : X ∈ F, and
(iii) ∀X, Y ∈ F, |X| > |Y | : ∃x ∈ X \ Y with Y ∪ {x} ∈ F.

The elements of F are called independent, the elements of
2E \F are called dependent. The maximal independent sets
are called bases of M , the minimal dependent sets are called
circuits. For X ⊆ E, a maximal independent subset of X
is called a basis of X. The rank r(X) of X is the maximal



cardinality of a basis of X, r(X) := max{|Y | | Y ⊆ X, Y ∈
F}.

Proposition 2.2. Let (E, F) be a matroid. Then
(i) for X ⊆ E, all bases of X have the same cardinality;
(ii) for all bases B1, B2 of M , x ∈ B1 \ B2 there exists

y ∈ B2 \B1 such that (B1 \ {x})∪{y} is a basis of M .

Proposition 2.3. Let (E, F) be a matroid and r(·) its
rank function. Then

(i) r(∅) = 0,
(ii) ∀X ⊆ E : r(X) ≤ |X|,
(iii) ∀X ⊆ E : r(X) = |X| ⇔ X ∈ F,
(iv) ∀X, Y ⊆ E, X ⊆ Y : r(X) ≤ r(Y ).

For X ∈ F and y ∈ E such that X ∪ {y} 6∈ F, we use
C(X, y) to denote the unique circuit in X∪{y}. If X∪{y} ∈
F, we define C(X, y) := ∅.

3. MINIMUM WEIGHT BASIS
The results presented in this section generalize and are

motivated by the corresponding results for the minimum
spanning tree problem in [16]. We consider the following
problem. Given a matroid M = (E, F) and a weight function
w : E → N, find a basis B ⊆ E of M of minimum weight.
The weight of a subset of E is defined as the sum of the
weights of its elements. The weight of an optimal solution
is denoted by wOPT .

We assume that the set F of independent subsets is im-
plicitly given by a rank oracle that for any set X ⊆ E com-
putes its rank r(X). Note that a rank oracle is polynomially
equivalent to an independence oracle [14].

The search space equals S = {0, 1}|E|, where each posi-
tion of the bitstring corresponds to an element from E =
{e1, . . . , e|E|}. A search point s ∈ {0, 1}|E| corresponds to
the subset E(s) := {ei ∈ E | si = 1, 1 ≤ i ≤ |E|} of E. We
define the weight w(s) of a bitstring s as the weight of the
corresponding set E(s). In a similar way we define the rank
r(s) of a bitstring s as r(s) := r(E(s)).

We consider two fitness functions f and f ′. Let wmax

denote the maximum weight of any element in E. Then
wub := |E| · wmax is an upper bound on the weight of any
subset of E. Let

f(s) := (r(E)− r(s)) · |E| · wub

+ (|E(s)| − r(E)) · wub +
X

e∈E(s)

w(e)

be the first fitness function which is to be minimized. The
expression is dominated by the first term which encodes the
number r(E) − r(s) of elements that have to be added to
E(s) to get a superset of a basis. If E(s) is a superset of a
basis, this term vanishes and the second term dominates the
expression. The factor |E(s)| − r(E) denotes the number of
elements that have to be removed from E(s) to get a basis
of M . If E(s) is a basis of M , both the first and second term
vanish and the fitness of s corresponds to the weight of the
elements in E(s).

The second term in the fitness function f explicitly pe-
nalizes circuits. This is not necessary, since the removal of
an element of a circuit leads to a weight decrease by itself.
Therefore, we also investigate the fitness function

f ′(s) := (r(E)− r(s)) · wub +
X

e∈E(s)

w(e) .

Note that f ′(s) equals f(s) if s describes a spanning tree. We
shall see that the additional information concerning |E(s)|
in the first fitness function f allows to obtain better bounds.

The remainder of this section is structured as follows.
First we prove two propositions concerning the expected
number of generations until a superset of a basis and a basis
have been constructed. Then we present several proposi-
tions about basis transition properties which are needed to
prove the main theorems of this section.

Proposition 3.1. The expected number of generations
until RLS or (1+1) EA working on one of the fitness func-
tions f or f ′ constructs a superset of a basis of M is bounded
by O(|E| log r(E)).

Proof. Suppose the initial search point s does not de-
scribe a superset of a basis. Then r(s) < r(E) holds. Both
fitness functions f and f ′ are defined in such a way that the
rank of E(s) will never decrease in accepted steps. For each
subset X ⊆ E, there are at least r(E)− r(X) elements of E
whose inclusion increases the rank of X by 1.

The probability that a step increases the rank of E(s) is

at least 1
2
· r(E)−r(s)

|E| for RLS and 1
2e
· r(E)−r(s)

|E| for (1+1) EA.

The latter probability is a lower bound on

(1− |E|−1)r(s) · (1− (1− |E|−1)r(E)−r(s))

which denotes the probability that r(s) elements of a fixed
basis of E(s) remain unchanged and at least one of r(E)−
r(s) elements that enlarge this independent subset is flipped.
Hence, the expected number of generations until s describes
a superset of some basis is bounded from above by

r(E)−1X
i=0

2e|E|
r(E)− i

= O(|E| log r(E)) .

This concludes the proof.

Proposition 3.2. The expected number of generations
until RLS or (1+1) EA working on the fitness function f
constructs a basis of M starting from a superset of a basis
is bounded by O(|E| log |E|).

Proof. Suppose the initial search points s describes a
proper superset of some basis of M . Then |E(s)| > r(E)
holds. The fitness function f is defined in such a way that
only supersets of bases are accepted, i.e., the rank of E(s)
does not change. Furthermore, the cardinality of E(s) never
increases.

The probability that a step decreases the cardinality of
E(s) while maintaining a superset of a basis is at least 1

2
·

|E(s)|−r(E)
|E| for RLS and 1

2e
· |E(s)|−r(E)

|E| for (1+1) EA. The

latter probability is a lower bound on

(1− |E|−1)r(E) · (1− (1− |E|−1)|E(s)|−r(E))

which denotes the probability that r(E) elements of a fixed
basis of M contained in E(s) remain unchanged and at
least one of the remaining |E(s)| − r(E) elements is flipped.
Hence, the expected number of generations until s describes
a basis of M is bounded from above by

|E|X
i=r(E)+1

2e|E|
i− r(E)

= O(|E| log |E|) .

This concludes the proof.



We remark that Proposition 3.2 holds also for RLS and
the fitness function f ′, but not for (1+1) EA and f ′. Since
RLS flips at most two bits per step, an increase in |E(s)|
implies an increasing weight. Consequently, steps increasing
|E(s)| are not accepted. This argument does not hold for
the (1+1) EA, which might exclude a heavy element and
include two or more light elements instead while maintaining
a superset of a basis.

The following proposition will later turn out to be useful
in order to prove a bound on the number of steps needed to
get from an arbitrary basis to a minimum weight basis.

Proposition 3.3. Given a matroid M = (E, F) and two
sets A, B ∈ F such that C(B, a) 6= ∅ for all a ∈ A \ B
holds. Then there exists a bipartite matching in the graph
G := (VG, EG), VG := A4B, EG := {(a, b) | a ∈ A \B, b ∈
C(B, a) \A} covering A \B.

Proof. Note that G is a bipartite graph with bipartition
V = (A \ B) ∪̇ (B \ A). For X ⊆ A \ B define N(X) :=
{b ∈ B \A | ∃x ∈ X : (x, b) ∈ EG}. We show |N(X)| ≥ |X|
for all X ⊆ A \ B. Then the claim follows by the classical
Theorem of Hall (see, e.g., [14]).

Suppose there exists X ⊆ A \B with |N(X)| < |X|. The
sets X and N(X) are independent and disjoint as subsets of
A\B and B\A, respectively. Moreover, the sets X ∪̇(A∩B)
and N(X) ∪̇ (A∩B) are independent as subsets of A and B,
respectively, and |N(X) ∪̇ (A ∩ B)| < |X ∪̇ (A ∩ B)| holds.
Hence, by Definition 2.1, there exists x ∈ (X ∪̇ (A ∩ B)) \
(N(X) ∪̇ (A∩B)) = X \N(X) = X such that N(X) ∪̇ (A∩
B) ∪̇ {x} ∈ F. On the other hand, by the definition of N(·),
the set N(X) ∪̇(A∩B) ∪̇{x} contains the cycle C(B, x).

Proposition 3.4. Let s be a search point describing a
non-minimum weight basis B of M . Then there exists some
k ∈ {1, . . . , r(E)} and k different accepted 2-bit flips such
that the average weight decrease of these flips is (w(s) −
wOPT )/k.

Proof. Let B∗ denote a minimum weight basis of M and
define k := |B∗ \B|. By applying Proposition 3.3 to B and
B∗ we obtain an injective function α : B∗ \ B → B \ B∗

such that α(e) ∈ C(B, e). By Proposition 2.2(i), all bases of
a matroid have equal cardinality, hence, the function α is a
bijection.

By Proposition 2.2(ii), B ∪ {e} \ {α(e)} is again a basis
of M . Furthermore, since B∗ is an optimal basis w(e) ≤
w(α(e)) holds for all e ∈ B∗ \ B. Hence, exchanging e
and α(e) does not increase the total weight and the 2-bit
flip involving e and α(e) is accepted. All k 2-bit flips to-
gether change B into B∗ and the total weight decrease is
w(s)−wOPT . Hence, the average weight decrease is (w(s)−
wOPT )/k.

The analysis performed later can be simplified if the pa-
rameter k in Proposition 3.4 is independent of the search
point s. This can be easily accomplished by allowing non-
accepted 2-bit flips whose weight decrease is defined as 0.
We add r(E)− k non-accepted 2-bit flips to the k 2-bit flips
from Proposition 3.4.

Proposition 3.5. Let s be a search point describing a
basis B of M . Then there exists a set of r(E) 2-bit flips
such that the average weight decrease of these flips is (w(s)−
wOPT )/r(E).

Since Proposition 3.2 does not hold for the fitness function
f ′ in combination with (1+1) EA, we need a result similar
to Proposition 3.5 for supersets of a basis. Since we start
from supersets of a basis, we need to allow also 1-bit flips to
reach a basis.

Proposition 3.6. Let s be a search point describing a
superset of a basis. Then there exists a set of |E| − r(E)
1-bit flips and a set of r(E) 2-bit flips such that the average
weight decrease is (w(s)− wOPT )/|E|.

Proof. Let B′ ⊆ E(s) denote a basis of M and s′ the
corresponding search point. Consider the set of |E(s)| −
r(E) 1-bit flips corresponding to the elements in E(s) \ B′.
Their removal from E(s) does not change the rank of E(s),
hence the 1-bit flips are accepted. We obtain the basis B′

and apply Proposition 3.5. Alltogether, we obtain a weight
decrease of w(s)− wOPT and performed |E(s)| flips.

Similar to Proposition 3.5 we allow non-accepted 1-bit
flips whose weight decrease is defined as 0. By adding |E| −
|E(s)| non-accepted 1-bit flips we obtain the claimed re-
sult.

Theorem 3.7. The expected number of generations until
RLS or (1+1) EA working on the fitness function f con-
structs a minimum weight basis is bounded by
O(|E|2(log r(E) + log wmax)).

Proof. By Proposition 3.1 and 3.2, it is sufficient to con-
sider the search process after having found a search point s
describing a basis. Then, by Proposition 3.5, there exists
a set of r(E) 2-bit flips whose average weight decrease is
(w(s)−wOPT )/r(E). The choice of such a 2-bit flip is called
a good step. The probability of performing such a good
step equals Θ(r(E)/|E|2) and each of the good steps is cho-
sen with the same probability. A good step decreases the
difference between the weight of the current search point
s and wOPT on average by a factor of 1 − 1/r(E). This
holds independently of previous good steps. Hence, after
N good steps, the expected difference between w(s) and
wOPT is given by (1 − 1/r(E))N · (w(s) − wOPT ). Since
w(s) ≤ r(E) · wmax and wOPT ≥ 0, we obtain the upper
bound (1− 1/r(E))N ·D, where D := r(E) · wmax.

If N := d(ln 2) · r(E) · (log 2D)e, this bound is at most
1
2
. Since the difference is not negative, by Markov’s in-

equality, the probability that the bound is less than 1 is
at least 1/2. The difference is an integer implying that
the probability of having found a minimum weight basis
is at least 1/2. Therefore, the expected number of good
steps until a minimum weight basis is found is bounded by
2N = O(r(E) log D) = O(r(E)(log r(E) + log wmax)).

By our construction, there are always exactly r(E) good
steps. Therefore, the probability of a good step does not
depend on the current search point. Hence, the expected
number of generations until l good steps have been made
equals Θ(l|E|2/r(E)). Altogether, the expected number of
iterations is bounded by

O(N |E|2/r(E)) = O(|E|2(log r(E) + log wmax)) .

This concludes the proof.

A slightly worse bound can be shown for the fitness func-
tion f ′ by applying Proposition 3.6 instead of Proposition 3.5.



Theorem 3.8. The expected number of generations until
RLS or (1+1) EA working on the fitness function f ′ con-
structs a minimum weight basis is bounded by
O(|E|2(log |E|+ log wmax)).

Proof. By Proposition 3.1, it is sufficient to consider the
search process after having found a search point s describing
a superset of a basis. Then, by Proposition 3.6, for each step
there exists a set of |E|−r(E) 1-bit flips and a set of r(E) 2-
bit flips such that the total weight decrease is w(s)−wOPT .
The choice of such a bit flip is called a good step. If the total
weight decrease of the 1-bit flips is larger than the total
weight decrease of the 2-bit flips, the step is called a 1-step.
Otherwise, it is called a 2-step. Note that the notion of a
2-step does not imply that we actually perform a 2-bit flip,
similarly for 1-steps and 1-bit flips.

Consider the sequence of all steps until a minimum weight
basis is reached. Suppose that at least half of the required
steps are 2-steps. Consider only these 2-steps. The probabil-
ity of a good 2-bit flip equals Θ(r(E)/|E|2). The expected
weight decrease of such a 2-bit flip in a 2-step is at least
1
2
(w(s)− wOPT )/r(E), resulting in a factor not larger than

1−1/(2r(E)). Hence, we can adapt the proof of Theorem 3.7
with N ′ := d(ln 2) · 2r(E) · (log 2D′)e, D′ := |E| · wmax and
obtain the bound O(N ′|E|2/r(E)) for the expected number
of 2-steps. Since the majority of all steps are 2-steps, the
claimed result follows.

Now suppose that at least half of the required steps are
1-steps and consider only these 1-steps. The probability of
a good 1-bit flip equals Θ(k/|E|) for k = |E| − r(E). The
expected weight decrease of such a 1-bit flip in a 1-step is
at least 1

2
(w(s) − wOPT )/k, resulting in a factor not larger

than 1 − 1/(2k). Again, we can apply the proof technique
of Theorem 3.7 where N ′′ := d2 · (ln 2) · k · (log 2D′)e =
O(|E|(log |E| + log wmax)) takes the role of N . We obtain
the upper bound

O(N ′′|E|/k) = O(|E|(log |E|+ log wmax))

for the expected number of 1-steps. Since the majority of
all steps are 1-steps, the total number of steps is of the same
order, which is even smaller than the proposed bound.

Neumann and Wegener [16] show a lower bound of
Ω(|E|2 log r(E)) for a special class of instances of the mini-
mum spanning tree problem. Hence, Ω(|E|2 log r(E)) is also
a lower bound for the minimum weight basis problem.

We briefly want to mention the benefits of more problem-
specific mutation operators. After having found a basis of a
matroid, we are only interested in offspring with the same
cardinality. The probability of such an offspring can be in-
creased using the following two mutation operators: If RLS
flips two bits, it chooses randomly a 0-bit and randomly a
1-bit. If s contains k 1-bits, (1+1) EA flips each 1-bit with
probability 1/k and each 0-bit with probability 1/(|E| − k).

Using the modified mutation operators, the probability of
a specific element exchange for bases increases from Θ(1/|E|2)
to Θ(r(E)−1(|E|−r(E))−1). Therefore, the bound of Theo-
rem 3.7 can be replaced by O(r(E)|E|(log r(E)+log wmax)+
|E| log |E|). In the case of Theorem 3.8 we obtain the bound
O(r(E)|E|(log |E|+ log wmax)).

The expected number of generations can be further re-
duced by using parallel versions of (1+1) EA and RLS that
produce several offspring in each iteration. The (1+λ) EA
and λ-PRLS algorithm produce independently λ offspring

from the single individual of the current population. The
selection procedure selects an individual with the smallest
fitness value among the parent and its offspring. In the
proofs of Theorem 3.7 and Theorem 3.8 the probability of
a good step is O(r(E)/|E|2). Choosing λ := d|E|2/r(E)e,
this probability is increased to a positive constant. As be-
fore, the expected number of good steps is bounded by
O(r(E)(log r(E)+log wmax)) and O(r(E)(log |E|+log wmax)),
respectively. This leads to the following result.

Theorem 3.9. The expected number of generations until
λ-PRLS or (1+λ) EA with λ := d|E|2/r(E)e children con-
structs a minimum weight basis is bounded by
O(r(E) log wmax + |E| log |E|).

Using the modified mutation operator mentioned above,
the probability of a good step reduces to O(1/|E|) and we
obtain the same bound on the expected number of genera-
tions as in Theorem 3.9 already for λ := |E|.

Neumann and Wegener [17] also consider multi-objec-
tive optimization techniques for the (single-objective) min-
imum spanning tree problem. They study the behavior of
two multi-objective evolutionary algorithms called SEMO
and GSEMO. The analysis can be carried over to the min-
imum weight basis problem for matroids and results in a
bound of O(r(E)|E|(r(E)+log |E|+log wmax)) on the num-
ber of generations.

4. MATROID INTERSECTION
The results presented in this section are motivated by

the results for the maximum matching problem in [9]. We
consider the matroid intersection problem which is defined
as follows. Given two matroids M1 = (E, F1) and M2 =
(E, F2) on the same ground set E by their independence or-
acles, compute a set X ∈ F1∩F2 such that |X| is maximum.
Let OPT denote such an optimal element of F1 ∩ F2. The
well-known matroid intersection algorithm by Edmonds [3,
14] starts with X := ∅. In each iteration, it searches a
shortest SX -TX -path in the auxiliary graph GX . This so-
called augmenting path gives rise to X ′ ∈ F1 ∩ F2 with
|X ′| = |X| + 1. The algorithm terminates if there is no
augmenting path.

The auxiliary graph GX for X ∈ F1 ∩ F2 is defined as
follows. Its node set is E, the edges are given by AX ∪ BX

with AX := {(x, y) | y ∈ E \ X, x ∈ C1(X, y) \ {y}} and
BX := {(y, x) | y ∈ E \ X, x ∈ C2(X, y) \ {y}}. We set
SX := {y ∈ E \ X |X ∪ {y} ∈ F1} and TX := {y ∈ E \
X |X ∪ {y} ∈ F2}.

Let the node sequence y0, x1, y1, . . . , xn, yn denote any
shortest SX -TX -path and define X ′ := X \ {x1, . . . , xn} ∪
{y0, y1, . . . , yn}. Then this path is an augmenting path, i.e.,
X ′ ∈ F1 ∪ F2 and |X ′| = |X| + 1. In the EA setting, such
an augmentation step corresponds to simultaneously flip-
ping exactly the elements corresponding to the nodes of the
augmenting path.

The above algorithm solves the matroid intersection prob-
lem in O(|E|3θ) time, where θ is the maximum complexity
of both independence oracles. Faster matroid intersection
algorithms are due to Cunningham [2] and Gabow and
Xu [6].

We study the performance of evolutionary algorithms for
the matroid intersection problem. We assume that we are
given rank oracles r1 and r2 that compute for any set X ⊆ E



its rank with respect to M1 and M2, respectively. Again, we
consider the RLS and (1+1) EA algorithm. We consider the
fitness function

f(s) := −Φ(s) · |E|+ |E(s)| ,

where Φ(s) := 2|E(s)|−r1(E(s))−r2(E(s)). The expression
is dominated by Φ(s), which measures the infeasibility of
E(s). If E(s) is a common independent set, this first term
vanishes and the fitness of s equals the cardinality of E(s).

A more precise way to measure the infeasibility of E(s)
is to replace Φ(s) by Ψ(s) := min{|X||X ⊆ E, E(s) \ X ∈
F1∩F2}|. However, Ψ(s) cannot be easily computed. Hence,
we resort to Φ(s). Note that 1

2
Φ(s) ≤ Ψ(s) ≤ Φ(s) ≤ 2|E|

holds for all s ∈ {0, 1}|E|.
First, we consider the phase until a common independent

set has been constructed. Note that the empty set is a trivial
common independent set. Hence, the first phase can also be
skipped entirely.

Proposition 4.1. The expected number of generations
until RLS or (1+1) EA working on the fitness function f
constructs a common independent set is bounded by
O(|E| log |E|).

Proof. Suppose E(s) 6∈ F1 ∩ F2 holds for the initial
search point s. The fitness function f is defined in such
a way that the infeasibility Φ(s) never increases. There are
at least 1

2
Φ(s) elements in E(s) that lead to a decrease of

the infeasibility Φ(s). The probability that a step decreases

the infeasibility Φ(s) is at least 1
2
· Φ(s)

2|E| for RLS and at least
1
2e
· Φ(s)

2|E| for (1+1) EA. The last probability is a lower bound

for (1 − |E|−1)|E\E(s)| · (1 − (1 − |E|−1)Φ(s)/2), which de-
notes the probability that the complement of E(s) remains
fixed and at least one of 1

2
Φ(s) infeasible elements is removed

from E(s). Hence, the expected number of generations until
s describes an element in F1 ∩F2 is bounded from above by

Φ(s)X
i=1

4e|E|
i

= O(|E| log |E|) .

This concludes the proof.

Next, we consider the search process after having found a
common independent set X ∈ F1 ∩ F2. We show that the
length of a shortest SX -TX -path in GX can be bounded in
terms of |X| and |OPT |.

Proposition 4.2. Let ε > 0 and X ∈ F1 ∩ F2 such that
|X| < (1−ε)|OPT |. There exists an SX-TX-path in GX with
length at most 2d1/εe − 2.

Proof. It was shown by Cunningham [2] that GX con-
tains k := |OPT | − |X| disjoint SX -TX -paths. Hence, there
exists an SX -TX -path with length at most 2b|X|/kc. Since
|X| < (1−ε) |OPT |, we have |X|/k < (1−ε)/ε < 1/ε. Thus,
the length of this path is bounded by 2d1/εe − 2.

The bound on the length of an augmenting path allows
us to lower bound the probability that RLS or (1+1) EA
finds such an augmenting path. These bounds lead to upper
bounds on the expected number of generations until |E(s)|
is increased, and finally, until an (1 − ε)-approximation is
constructed.

Theorem 4.3. For ε > 0, the expected number of genera-
tions until RLS or (1+1) EA working on the fitness function
f constructs an (1−ε)-approximation of a maximum element

of F1 ∩ F2 is bounded by O(|E|2d1/εe).

Proof. By Proposition 4.1, it suffices to consider the
search process after having found a search point s with
E(s) ∈ F1 ∩ F2. The fitness function f is designed such
that only steps leading to search points s′ describing com-
mon independent sets of at least the same cardinality as s
are accepted. Assume that |E(s)| < (1− ε)|OPT |.

By Proposition 4.2, there exists an augmenting path in
GE(s) of length at most l := 2d1/εe − 2. The (1+1) EA
flips exactly the l + 1 elements corresponding to the nodes
of this path with probability Ω(|E|−l−1). The RLS algo-
rithm needs l/2 2-bit flips shortening the augmenting path
and a final 1-bit flip to increase |E(s)|. The probability
that this happens within the next l/2 + 1 steps is bounded

from below by Ω((|E|−2)l/2 · |E|−1) = Ω(|E|−l−1). Hence,
the expected number of generations to improve |E(s)| is
bounded by O(|E|l+1) for (1+1) EA and by O(l · |E|l+1)
for RLS. A more careful analysis for RLS yields the bound
O(|E|l+1) (see [9]). Since |OPT | ≤ |E|, the expected number
of generations until RLS or (1+1) EA constructs an (1− ε)-
approximation of a maximum element of F1∩F2 is bounded
by O(|E| log |E|) + O(|E|) ·O(|E|l+1) = O(|E|2d1/εe).

Giel and Wegener [9] have shown that RLS and
(1+1) EA require an exponential expected running time
to find an optimal solution for certain bipartite maximum
matching problems. Since bipartite matching is a special
case of matroid intersection, we know that the matroid in-
tersection problem cannot be solved by RLS or (1+1) EA in
polynomial time.

5. WEIGHTED MATROID INTERSECTION
In the weighted matroid intersection problem we addition-

ally consider a weight function w : E → N which assigns
a non-negative weight w(e) to each element e ∈ E of the
ground set. The task is to compute a common independent
set X ∈ F1 ∩ F2 such that its weight w(X) :=

P
e∈X w(e)

is maximum.
Similar to the unweighted case we consider the fitness

function

f(s) := −Φ(s) · wub +
X

e∈E(s)

w(e) ,

where wub := |E| ·wmax is an upper bound on the weight of
any subset of E.

Note that the RLS algorithm is not suited for the weighted
matroid intersection problem since, in general, simultaneous
flips of more than two bits are required. In the unweighted
case, a long augmenting path can be broken into a series of
2-bit flips maintaining the fitness value and one final 1-bit
flip. In the weighted case, there are simple examples of paths
of length five where such a decomposition into a sequence of
2-bit flips with non-negative difference of the fitness value
does not exist.

Although bit flips of at most two bits are not sufficient in
the weighted case, it is possible to obtain a 1

2
-approximation

using only bit flips of at most three bits. We restrict our-
selves in the following to this special setting and analyze the
expected number of generations to obtain a 1

2
-approximation.



Proposition 5.1. Let s be a search point such that its
fitness value f(s) cannot be improved by flipping at most
three bits. Then w(s) ≥ 1

2
wOPT holds.

Proof. Define A := OPT and B := E(s). Since the
fitness value f(s) cannot be improved by flipping one or two
bits of s, we have C1(B, a) 6= ∅ and C2(B, a) 6= ∅ for all
a ∈ A \B. Define X := A \B = {x1, . . . xk}.

By Proposition 3.3, there exist sets Y ′ = {y′1, . . . , y′k} ⊆
B \ A and Y ′′ = {y′′1 , . . . , y′′k} ⊆ B \ A such that y′i ∈
C1(B, xi) and y′′i ∈ C2(B, xi) for 1 ≤ i ≤ k. Since the
fitness value f(s) cannot be improved by flipping at most
three bits of s, we have w(xi) ≤ w(y′i)+w(y′′i ) for 1 ≤ i ≤ k.
Summing up these inequalities yield w(A \ B) = w(X) ≤
w(Y ′) + w(Y ′′) ≤ 2 w(B \ A). Hence, w(s) ≥ 1

2
wOPT

holds.

In order to analyze the expected number of generations
until a 1

2
-approximate solution is found we prove that there

exists at least one bit flip with a certain weight increase.

Proposition 5.2. Let s be a search point such that w(s) ≤
( 1
2
− ε) wOPT holds for some ε > 0. Then there exists an

accepted bit flip involving at most three bits with a weight
increase of at least 2ε

|E|wOPT .

Proof. Define A := OPT , B := E(s) and X := A \B =
{x1, . . . , xk}. We use the index sets I ′ and I ′′ to denote
those elements of X whose addition to B causes a cycle in
the matroid M1 and M2, respectively.

I ′ := {i | 1 ≤ i ≤ k, C1(B, xi) 6= ∅}
I ′′ := {i | 1 ≤ i ≤ k, C2(B, xi) 6= ∅}

By Proposition 3.3, there exist a set Y ′ = {y′i | i ∈ I ′} ⊆
B \ A such that y′i ∈ C1(B, xi) for all i ∈ I ′. Likewise,
there exists a set Y ′′ = {y′′i | i ∈ I ′′} ⊆ B \ A such that
y′′i ∈ C2(B, xi) for all i ∈ I ′′. We define the weights wi, w′

i

and w′′
i for 1 ≤ i ≤ k as follows:

wi := w(xi)

w′
i :=

(
w(y′i) if i ∈ I ′

0 otherwise

w′′
i :=

(
w(y′′i ) if i ∈ I ′′

0 otherwise

By assumption, w(B) ≤ ( 1
2
− ε) w(A) holds. Hence, we have

w(A\B)−w(B\A) ≥ ( 1
2
+ε) w(A). Since w(B\A) ≤ w(B) ≤

( 1
2
−ε) w(A), it follows that w(A\B)−2w(B\A) ≥ 2ε w(A).

We have

kX
i=1

wi − w′
i − w′′

i = w(X)− w(Y ′)− w(Y ′′)

≥ w(A \B)− 2w(B \A) ≥ 2ε w(A)

Hence, there exists an i ∈ {1, . . . , k} such that wi − w′
i −

w′′
i ≥ 2ε

k
w(A). Consider the bit flip that adds the element

xi and removes the elements y′i and y′′i if i ∈ I ′ and i ∈
I ′′, respectively (note that y′i and y′′i might be identical).
This bit flip involves at most three bits and has a weight
increase of at least 2ε

|E|w(A). By construction, the resulting

bit string encodes a common independent set and the bit
flip is accepted.

Now we can prove our main result, the expected number of
generations for a 1

2
-approximation of the weighted matroid

intersection problem.

Theorem 5.3. The expected number of generations until
(1 + 1) EA working on the fitness function f constructs a
1
2
-approximation of a maximum weight element of F1∩F2 is

bounded by O(|E|4(log r+log wmax)), where r := min{r1(E),
r2(E)}.

Proof. By Proposition 4.1 (which also holds for the
weighted case), it suffices to consider the search process af-
ter having found a search point s with E(s) ∈ F1 ∩F2. The
fitness function f is designed such that only steps leading to
search points s′ that describe common independent sets of
at least the same weight as s are accepted.

Now consider any search point s with E(s) ∈ F1 ∩F2 and

w(s) < 1
2
wOPT . Define ε := 1

2
− w(s)

wOP T
, i.e., w(s) = ( 1

2
−

ε) wOPT holds. By Proposition 5.2 there exists an accepted
bit flip involving at most three bits with a weight increase of
at least 2ε

|E|wOPT . Such a step is called a good step. A good

step decreases the difference ε · wOPT between the weight
w(s) of the current search point s and 1

2
wOPT by a factor

not larger than 1 − 2/|E|. Hence, after N good steps, the
difference between w(s) and 1

2
wOPT is bounded from above

by (1 − 2/|E|)N · ( 1
2
wOPT − w(s)). Since wOPT ≤ r · wmax

and w(s) ≥ 0, we obtain the upper bound (1− 2/|E|)N ·D,
where D := 1

2
r · wmax.

If N := d(ln 2) · |E|
2
· log(3D)e, this bound is at most 1

3
.

The difference is half-integral which implies that we have
actually reached a 1

2
-approximation after at most N good

steps. The probability of a good step is bounded from below
by Ω(|E|−3). Hence, the expected number of generations for
N good steps is bounded by

O(N |E|3) = O(|E|4(log r + log wmax)) .

This concludes the proof.

Consider the following modification of the RLS algorithm.
Choose b ∈ {0, 1, 2} randomly. If b < 2 proceed as before.
Otherwise, choose (i, j, k) ∈ {(a, b, c) | 1 ≤ a < b < c ≤ |E|}
randomly and flip the i-th, j-th and k-th bit of s. We call
this algorithm RLS3.

Since we restrict ourselves to bit flips involving at most
three bits, all good steps that are accepted by the (1+1) EA
can also be achieved using RLS3. Moreover, the proba-
bility of a particular bit flip is again bounded from below
by Ω(|E|−3). Hence, Theorem 5.3 does not only hold for
(1+1) EA, but also for RLS3.

6. INTERSECTION OF THREE OR MORE
MATROIDS

Furthermore, the result of Theorem 5.3 can be easily gen-
eralized to the intersection of p matroids Mi = (E, Fi),
1 ≤ i ≤ p. The task is to compute an independent set
X ∈

T p
i=1 Fi with maximum weight. This problem is NP-

hard for p ≥ 3, as finding a Hamiltonian circuit in a directed
graph is a special case; see [13].

Similar to the previous case of p = 2, there are situations
in which simultaneous flips of at least p+1 bits are required.
Therefore, we do not consider the RLS algorithm in this
section. A modification of the RLS algorithm similar to that



described in the last paragraphs of the preceding section is
still possible though.

The definition of the function Φ(s) is adjusted in the
obvious way. The bound of Proposition 4.1 increases to
O(p|E| log |E|). The results of Proposition 5.2 carry over
to the intersection of p matroids, although the achieved ap-
proximation ratio is worse.

Proposition 6.1. Let s be a search point such that w(s) ≤
( 1

p
− ε) wOPT holds for some ε > 0. Then there exists an

accepted bit flip involving at most p + 1 bits with a weight
increase of at least p ε

|E|wOPT .

The lower bound for the probability of picking a particu-
lar bit flip of at most p+1 bits reduces to Ω(|E|−p−1). This
observation leads to the following generalization of Theo-
rem 5.3.

Theorem 6.2. Given p matroids Mi = (E, Fi), 1 ≤ i ≤
p, the expected number of generations until (1+1) EA work-
ing on the fitness function f constructs a 1

p
-approximation

of a maximum weight element of
T

1≤i≤p Fi is bounded by

O(|E|p+2(log r +log wmax)), where r := min{ri(E) | 1 ≤ i ≤
p}.

Similar to the minimum weight basis problem we can
use parallel versions of (1+1) EA and RLS to reduce the
number of generations. Choosing the number of offspring
per generation as λ := |E|p+1 improves the probability of
a good step from Ω(|E|−p−1) to a positive constant. As
before, the expected number of good steps is bounded by
O(|E|(log r + log wmax)). This leads to the following result.

Corollary 6.3. Given p matroids Mi = (E, Fi), 1 ≤
i ≤ p, the expected number of generations until (1+λ) EA
with λ := |E|p+1 children working on the fitness function f
constructs a 1

p
-approximation of a maximum weight element

of
T

1≤i≤p Fi is bounded by O(|E|(log r + log wmax)).

7. CONCLUSION
We have analyzed the performance of (1+1) EA and RLS

on a very general class of combinatorial optimization prob-
lems ranging from very simple problems that can be solved
optimally by the greedy method up to NP-hard problems.
Our results provide an indication of the enormous power of
evolutionary algorithms from a theoretical point of view. It
turns out that the very general and abstract structure of
matroid optimization problems suffices to lead evolutionary
algorithms into promising directions and to finally obtain
optimal or at least provably good solutions after only poly-
nomially many iterations.
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