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ABSTRACTWe analyze the performan
e of evolutionary algorithms onvarious matroid optimization problems that en
ompass avast number of e�
iently solvable as well as NP-hard 
ombi-natorial optimization problems (in
luding many well-knownexamples su
h as minimum spanning tree and maximum bi-partite mat
hing). We obtain very promising bounds on theexpe
ted running time and quality of the 
omputed solution.Our results establish a better theoreti
al understanding ofwhy randomized sear
h heuristi
s yield empiri
ally good re-sults for many real-world optimization problems.
Categories and Subject DescriptorsG.2.1 [Combinatori
s℄: Combinatorial algorithms; F.2.2[Nonnumeri
al Algorithms and Problems℄: Computa-tions on dis
rete stru
tures
General TermsTheory, Algorithms, Performan
e
Keywordsevolutionary algorithms, matroids, minimum weight basis,matroid interse
tion, randomized sear
h heuristi
s
1. INTRODUCTIONMotivation. While evolutionary algorithms are known towork (empiri
ally) well for many optimization problems inpra
ti
e, a satisfying and rigorous mathemati
al analysis oftheir performan
e is one of the main 
hallenges in the areaof geneti
 and evolutionary 
omputing. Interesting resultshave been obtained for some important, isolated optimiza-tion problems but a general theoreti
al explanation of thebehavior of evolutionary algorithms is still missing. Theaim of this paper is to make progress in this dire
tion. Westudy the performan
e of evolutionary algorithms on a verygeneral 
lass of 
ombinatorial optimization problems andobtain promising results on the running time and qualityof the 
omputed solutions. A summary of our results to-gether with an overview of the 
omplexity of the 
onsideredoptimization problems 
an be found in Table 1.Independen
e Systems and Matroids. Matroid theoryprovides a framework in whi
h a substantial 
lass of prob-
∗This work was supported by the Deuts
he Fors
hungsge-meins
haft (DFG) as part of the Collaborative Resear
hCenter �Computational Intelligen
e� (SFB 531).

lems in 
ombinatorial optimization 
an be studied from auni�ed perspe
tive. Matroids form a spe
ial 
lass of inde-penden
e systems that are given by a �nite set E and afamily of subsets F ⊆ 2E su
h that F is 
losed under sub-sets. The subsets 
ontained in F are 
alled independent anda maximal independent subset is 
alled a basis of the in-dependen
e system. A pre
ise de�nition of matroids alongwith some important 
lassi
al results is given in Se
tion 2.Many 
ombinatorial optimization problems 
an be for-mulated as follows: Given an independen
e system on aweighted set E, �nd a basis of minimum (or maximum)weight. We mention as an example the problem of �nd-ing a stable set with maximum weight in a given graph withweights on the nodes (here, the underlying independen
esystem is not a matroid).A famous result byRado [20℄, Gale [7℄, andEdmonds [4℄states that an independen
e system is a matroid if and onlyif the greedy algorithm 
omputes a minimum weight basisfor arbitrary weights on the elements of E. This algorithmi

hara
terization of matroids highlights their relevan
e in thearea of e�
ient algorithms and 
ombinatorial optimization.Examples of Matroids and First Results. Graphi
 ma-troids are an important example of matroids where E is theedge set of a graph G = (V, E) and a subset of edges isindependent if it does not 
ontain a 
ir
uit. If the givengraph G is 
onne
ted, the problem of �nding a minimumweight basis of the 
orresponding graphi
 matroid is theminimum spanning tree problem. In the 
ontext of evolu-tionary algorithms, Raidl and Julstrom [21℄ analyze dif-ferent en
odings for the minimum spanning tree problemand propose to work with so-
alled edge sets. NeumannandWegener [16, 17℄ study evolutionary algorithms for theminimum spanning tree problem. They prove that two spe-
i�
 evolutionary algorithms, (1+1) EA and RLS, 
omputea minimum spanning tree in expe
ted polynomial time, i.e.,
O(|E|2(log |V | + log wmax)), where wmax denotes the maxi-mum weight of any edge; moreover, they establish a lowerbound of Ω(|E|2 log |V |). In Se
tion 3 we generalize thisresult to arbitrary matroids (see also Table 1).Another important example of matroids are linear ma-troids where E is a set of ve
tors and a subset is indepen-dent if the ve
tors 
ontained in it are linearly independent.Linear matroids o

ur, for example, in the minimum 
y
lebasis problem where the task is to �nd a minimum weightbasis of the 
y
le spa
e of a given graph with weights on theedges. This problem is an important building blo
k in vari-ous real-world optimization problems su
h as, for example,in ele
tri
al networks, stru
tural engineering, 
hemistry and



problem e�
ient algorithm known (1+1) EA and RLS lower bound on(1+1) EA and RLSminimum weight basis O(|E| log |E|) O(|E|2(log |E| + log wmax)) Ω(|E|2 log r(E)) [16, 17℄unweighted matroid interse
tion O(|E|2.5)
(1 − ε)-approximation in

O(|E|2⌈1/ε⌉)
exponential [8, 9℄weighted matroid interse
tion O(|E|2.5(log |E| + log wmax))

1/2-approximation in
O(|E|4(log |E|+ log wmax))

exponential [8, 9℄interse
tion of p ≥ 3 matroids NP-hard 1/p-approximation in
O(|E|p+2(log |E|+log wmax))

exponentialTable 1: A summary of results on various matroid optimization problems. The problems are des
ribed inthe �rst 
olumn. The se
ond 
olumn gives the running time of known e�
ient algorithms. The third 
olumndes
ribes the results for (1+1) EA and (modi�
ations of) RLS obtained in this paper. The last 
olumn giveslower bounds on the running time of (1+1) EA and RLS for obtaining an optimal solution.bio
hemistry, and in periodi
 timetabling; see, e.g., [15℄ fordetails.Matroid Interse
tion. Matroids have even more algo-rithmi
 power than just that of the greedy method. Ed-monds [3, 14℄ observed that also the (weighted) matroidinterse
tion problem 
an be solved e�
iently. That is, amaximum weight 
ommon independent set in two matroids
an be found in strongly polynomial time. The matroid in-terse
tion problem has appli
ations in many settings su
has, for example, edge 
onne
tivity [5℄, survivable networkdesign [1℄, 
onstrained minimum spanning trees [12℄, andmulti
ast network 
odes [11℄.The most prominent example of an optimization prob-lem that 
an be formulated as a matroid interse
tion prob-lem is the maximum weight mat
hing problem in bipartitegraphs. Giel and Wegner [8, 9, 10℄ analyze evolutionaryalgorithms for the maximum mat
hing problem (with unitweights). They show that (1+1) EA and RLS are (ran-domized) polynomial-time approximation s
hemes with anexpe
ted runtime of O(|E|2⌈1/ε⌉); moreover they 
onstru
t a
lass of bipartite graphs for whi
h the expe
ted optimizationtime of these algorithms grows exponentially. Motivated bythese results we prove in Se
tion 4 that (1+1) EA and RLSare polynomial time approximation s
hemes for the matroidinterse
tion problem with unit weights (see also Table 1).Our result for the unweighted matroid interse
tion prob-lem 
annot be generalized easily to the weighted 
ase andalso from the viewpoint of e�
ient algorithms it is knownthat the weighted version of the problem is somewhat harderthan the unweighted problem. In Se
tion 5 we prove that(1+1) EA and a slightly modi�ed version of RLS are 1
2
-approximation algorithms for the weighted matroid inter-se
tion problem (see also Table 1).NP-Hard Problems. The problem of �nding a maximum-size 
ommon independent set in three or more matroids isNP-hard as �nding a Hamiltonian 
ir
uit in a dire
ted graphis a spe
ial 
ase. On the other hand it is known that anyindependen
e system 
an be represented as an interse
tion of�nitely many matroids and a vast number of 
ombinatorialoptimization problem falls into this 
ategory. In Se
tion 6 weprove that (1+1) EA and (an appropriately modi�ed versionof) RLS are 1

p
-approximation algorithms for the NP-hardproblem to �nd a maximum-weight independent set in theinterse
tion of p ≥ 3 matroids (see also Table 1).

2. PRELIMINARIESWe study in this paper the behavior of two simple evolu-tionary algorithms, namely (1+1) EA and randomized lo
alsear
h (RLS), whi
h is sometimes also 
alled lo
al (1+1) EA.Both algorithms operate on bitstrings of �xed length anddi�er in the mutation operator. Initially, a bitstring s ∈
{0, 1}n is 
hosen randomly (whenever we speak of random-ness, we mean uniform randomness). The mutation opera-tors of (1+1) EA and RLS are de�ned as follows:(1+1) EA: Obtain the bitstring s′ by �ipping ea
h bitof s independently of the other bits with probability 1/n.RLS: Choose b ∈ {0, 1} randomly. If b = 0, 
hoose i ∈
{1, . . . , n} randomly and obtain s′ by �ipping the i-th bit of
s. If b = 1, 
hoose (i, j) ∈ {(k, l) | 1 ≤ k < l ≤ n} randomlyand obtain s′ by �ipping the i-th and j-th bit of s.The 
urrent sear
h point s is repla
ed by s′ if the �tnessvalue of s′ is better than or equal to that of s. This pro
e-dure repeats until a stopping 
riterion is met. In this paperwe analyze the expe
ted number of steps until we rea
h a
ertain �tness value 
orresponding to the problem solution.We shall now give the de�nition of matroids as well assome well-known properties used in this paper. See [14℄,[19℄, or [22℄, for a more detailed dis
ussion.Definition 2.1. Let E be a �nite set and F ⊂ 2E. Thepair M = (E,F) is 
alled a matroid if(i) ∅ ∈ F,(ii) ∀X ⊆ Y ∈ F : X ∈ F, and(iii) ∀X, Y ∈ F, |X| > |Y | : ∃ x ∈ X \ Y with Y ∪ {x} ∈ F.The elements of F are 
alled independent, the elements of
2E \ F are 
alled dependent. The maximal independent setsare 
alled bases of M , the minimal dependent sets are 
alled
ir
uits. For X ⊆ E, a maximal independent subset of Xis 
alled a basis of X. The rank r(X) of X is the maximal
ardinality of a basis of X, r(X) := max{|Y | | Y ⊆ X, Y ∈
F}.Proposition 2.2. Let (E, F) be a matroid. Then(i) for X ⊆ E, all bases of X have the same 
ardinality;(ii) for all bases B1, B2 of M , x ∈ B1 \ B2 there exists

y ∈ B2 \B1 su
h that (B1 \ {x})∪{y} is a basis of M .Proposition 2.3. Let (E,F) be a matroid and r(·) itsrank fun
tion. Then(i) r(∅) = 0,(ii) ∀X ⊆ E : r(X) ≤ |X|,



(iii) ∀X ⊆ E : r(X) = |X| ⇔ X ∈ F,(iv) ∀X, Y ⊆ E,X ⊆ Y : r(X) ≤ r(Y ).For X ∈ F and y ∈ E su
h that X ∪ {y} 6∈ F, we use
C(X, y) to denote the unique 
ir
uit in X∪{y}. If X∪{y} ∈
F, we de�ne C(X, y) := ∅.
3. MINIMUM WEIGHT BASISThe results presented in this se
tion generalize and aremotivated by the 
orresponding results for the minimumspanning tree problem in [16, 17℄. We 
onsider the followingproblem. Given a matroidM = (E, F) and a weight fun
tion
w : E → N, �nd a basis B ⊆ E of M of minimum weight.The weight of a subset of E is de�ned as the sum of theweights of its elements. The weight of an optimal solutionis denoted by wOPT .We assume that the set F of independent subsets is im-pli
itly given by a rank ora
le that for any set X ⊆ E 
om-putes its rank r(X). Note that a rank ora
le is polynomiallyequivalent to an independen
e ora
le [14℄.The sear
h spa
e equals S = {0, 1}|E|, where ea
h posi-tion of the bitstring 
orresponds to an element from E =
{e1, . . . , e|E|}. A sear
h point s ∈ {0, 1}|E| 
orresponds tothe subset E(s) := {ei ∈ E | si = 1, 1 ≤ i ≤ |E|} of E. Wede�ne the weight w(s) of a bitstring s as the weight of the
orresponding set E(s). In a similar way we de�ne the rank
r(s) of a bitstring s as r(s) := r(E(s)).We 
onsider two �tness fun
tions f and f ′. Let wmaxdenote the maximum weight of any element in E. Then
wub := |E| · wmax is an upper bound on the weight of anysubset of E. Let

f(s) := (r(E) − r(s)) · |E| · wub

+ (|E(s)| − r(E)) · wub +
X

e∈E(s)

w(e)be the �rst �tness fun
tion whi
h is to be minimized. Theexpression is dominated by the �rst term whi
h en
odes thenumber r(E) − r(s) of elements that have to be added to
E(s) to get a superset of a basis. If E(s) is a superset of abasis, this term vanishes and the se
ond term dominates theexpression. The fa
tor |E(s)| − r(E) denotes the number ofelements that have to be removed from E(s) to get a basisof M . If E(s) is a basis of M , both the �rst and se
ond termvanish and the �tness of s 
orresponds to the weight of theelements in E(s).The se
ond term in the �tness fun
tion f expli
itly pe-nalizes 
ir
uits. This is not ne
essary, sin
e the removal ofan element of a 
ir
uit leads to a weight de
rease by itself.Therefore, we also investigate the �tness fun
tion

f ′(s) := (r(E) − r(s)) · wub +
X

e∈E(s)

w(e) .Note that f ′(s) equals f(s) if s des
ribes a spanning tree. Weshall see that the additional information 
on
erning |E(s)|in the �rst �tness fun
tion f allows to obtain better bounds.Proposition 3.1. The expe
ted number of generationsuntil RLS or (1+1) EA working on one of the �tness fun
-tions f or f ′ 
onstru
ts a superset of a basis of M is boundedby O(|E| log r(E)).Proof. Suppose the initial sear
h point s does not de-s
ribe a superset of a basis. Then r(s) < r(E) holds. Both

�tness fun
tions f and f ′ are de�ned in su
h a way that therank of E(s) will never de
rease in a

epted steps. For ea
hsubset X ⊆ E, there are at least r(E)− r(X) elements of Ewhose in
lusion in
reases the rank of X by 1.The probability that a step in
reases the rank of E(s) isat least 1
2
· r(E)−r(s)

|E|
for RLS and 1

2e
· r(E)−r(s)

|E|
for (1+1) EA.The latter probability is a lower bound on

(1 − |E|−1)r(s) · (1 − (1 − |E|−1)r(E)−r(s))whi
h denotes the probability that r(s) elements of a �xedbasis of E(s) remain un
hanged and at least one of r(E) −
r(s) elements that enlarge this independent subset is �ipped.Hen
e, the expe
ted number of generations until s des
ribesa superset of some basis is bounded from above by

r(E)−1
X

i=0

2e|E|

r(E) − i
= O(|E| log r(E)) .This 
on
ludes the proof.Proposition 3.2. The expe
ted number of generationsuntil RLS or (1+1) EA working on the �tness fun
tion f
onstru
ts a basis of M starting from a superset of a basisis bounded by O(|E| log |E|).Proof. Suppose the initial sear
h points s des
ribes aproper superset of some basis of M . Then |E(s)| > r(E)holds. The �tness fun
tion f is de�ned in su
h a way thatonly supersets of bases are a

epted, i.e., the rank of E(s)does not 
hange. Furthermore, the 
ardinality of E(s) neverin
reases.The probability that a step de
reases the 
ardinality of

E(s) while maintaining a superset of a basis is at least 1
2
·

|E(s)|−r(E)
|E|

for RLS and 1
2e

· |E(s)|−r(E)
|E|

for (1+1) EA. Thelatter probability is a lower bound on
(1 − |E|−1)r(E) · (1 − (1 − |E|−1)|E(s)|−r(E))whi
h denotes the probability that r(E) elements of a �xedbasis of M 
ontained in E(s) remain un
hanged and atleast one of the remaining |E(s)| − r(E) elements is �ipped.Hen
e, the expe
ted number of generations until s des
ribesa basis of M is bounded from above by

|E|
X

i=r(E)+1

2e|E|

i − r(E)
= O(|E| log |E|) .This 
on
ludes the proof.We remark that Proposition 3.2 holds also for RLS andthe �tness fun
tion f ′, but not for (1+1) EA and f ′. Sin
eRLS �ips at most two bits per step, an in
rease in |E(s)|implies an in
reasing weight. Consequently, steps in
reasing

|E(s)| are not a

epted. This argument does not hold forthe (1+1) EA, whi
h might ex
lude a heavy element andin
lude two or more light elements instead while maintaininga superset of a basis.The following proposition will later turn out to be usefulin order to prove a bound on the number of steps needed toget from an arbitrary basis to a minimum weight basis.Proposition 3.3. Given a matroid M = (E,F) and twosets A, B ∈ F su
h that C(B, a) 6= ∅ for all a ∈ A \ Bholds. Then there exists a bipartite mat
hing in the graph
G := (VG, EG), VG := A △ B, EG := {(a, b) | a ∈ A \ B, b ∈
C(B, a) \ A} 
overing A \ B.



Proof. Note that G is a bipartite graph with bipartition
V = (A \B) ∪̇ (B \A). For X ⊆ A \B de�ne N(X) := {b ∈
B \ A | ∃x ∈ X : (x, b) ∈ EG}. We show |N(X)| ≥ |X|for all X ⊆ A \ B. Then the 
laim follows by the 
lassi
alTheorem of Hall (see, e.g., [14℄).Suppose there exists X ⊆ A \ B with |N(X)| < |X|. Thesets X and N(X) are independent and disjoint as subsets of
A\B and B\A, respe
tively. Moreover, the sets X ∪̇(A∩B)and N(X) ∪̇ (A∩B) are independent as subsets of A and B,respe
tively, and |N(X) ∪̇ (A ∩ B)| < |X ∪̇ (A ∩ B)| holds.Hen
e, by De�nition 2.1, there exists x ∈ (X ∪̇ (A ∩ B)) \
(N(X) ∪̇ (A∩B)) = X \N(X) = X su
h that N(X) ∪̇ (A∩
B) ∪̇ {x} ∈ F. On the other hand, by the de�nition of N(·),the set N(X) ∪̇(A∩B) ∪̇{x} 
ontains the 
y
le C(B, x).Proposition 3.4. Let s be a sear
h point des
ribing anon-minimum weight basis B of M . Then there exists some
k ∈ {1, . . . , r(E)} and k di�erent a

epted 2-bit �ips su
hthat the average weight de
rease of these �ips is (w(s) −
wOPT )/k.Proof. Let B∗ denote a minimumweight basis of M andde�ne k := |B∗ \ B|. By applying Proposition 3.3 to B and
B∗ we obtain an inje
tive fun
tion α : B∗ \ B → B \ B∗su
h that α(e) ∈ C(B, e). By Proposition 2.2(i), all bases ofa matroid have equal 
ardinality, hen
e, the fun
tion α is abije
tion.By Proposition 2.2(ii), B ∪ {e} \ {α(e)} is again a basisof M . Furthermore, sin
e B∗ is an optimal basis w(e) ≤
w(α(e)) holds for all e ∈ B∗ \ B. Hen
e, ex
hanging eand α(e) does not in
rease the total weight and the 2-bit�ip involving e and α(e) is a

epted. All k 2-bit �ips to-gether 
hange B into B∗ and the total weight de
rease is
w(s)−wOPT . Hen
e, the average weight de
rease is (w(s)−
wOPT )/k.The analysis performed later 
an be simpli�ed if the pa-rameter k in Proposition 3.4 is independent of the sear
hpoint s. This 
an be easily a

omplished by allowing non-a

epted 2-bit �ips whose weight de
rease is de�ned as 0.We add r(E)− k non-a

epted 2-bit �ips to the k 2-bit �ipsfrom Proposition 3.4.Proposition 3.5. Let s be a sear
h point des
ribing abasis B of M . Then there exists a set of r(E) 2-bit �ipssu
h that the average weight de
rease of these �ips is (w(s)−
wOPT )/r(E).Sin
e Proposition 3.2 does not hold for the �tness fun
tion
f ′ in 
ombination with (1+1) EA, we need a result similarto Proposition 3.5 for supersets of a basis. Sin
e we startfrom supersets of a basis, we need to allow also 1-bit �ips torea
h a basis.Proposition 3.6. Let s be a sear
h point des
ribing asuperset of a basis. Then there exists a set of |E| − r(E)1-bit �ips and a set of r(E) 2-bit �ips su
h that the averageweight de
rease is (w(s) − wOPT )/|E|.Proof. Let B′ ⊆ E(s) denote a basis of M and s′ the
orresponding sear
h point. Consider the set of |E(s)| −
r(E) 1-bit �ips 
orresponding to the elements in E(s) \ B′.Their removal from E(s) does not 
hange the rank of E(s),hen
e the 1-bit �ips are a

epted. We obtain the basis B′and apply Proposition 3.5. Alltogether, we obtain a weightde
rease of w(s) − wOPT and performed |E(s)| �ips.

Similar to Proposition 3.5 we allow non-a

epted 1-bit�ips whose weight de
rease is de�ned as 0. By adding |E| −
|E(s)| non-a

epted 1-bit �ips we obtain the 
laimed re-sult.Theorem 3.7. The expe
ted number of generations untilRLS or (1+1) EA working on the �tness fun
tion f 
on-stru
ts a minimum weight basis is bounded by
O(|E|2(log r(E) + log wmax)).Proof. By Proposition 3.1 and 3.2, it is su�
ient to 
on-sider the sear
h pro
ess after having found a sear
h point sdes
ribing a basis. Then, by Proposition 3.5, there existsa set of r(E) 2-bit �ips whose average weight de
rease is
(w(s)−wOPT )/r(E). The 
hoi
e of su
h a 2-bit �ip is 
alleda good step. The probability of performing su
h a goodstep equals Θ(r(E)/|E|2) and ea
h of the good steps is 
ho-sen with the same probability. A good step de
reases thedi�eren
e between the weight of the 
urrent sear
h point
s and wOPT on average by a fa
tor of 1 − 1/r(E). Thisholds independently of previous good steps. Hen
e, after
N good steps, the expe
ted di�eren
e between w(s) and
wOPT is given by (1 − 1/r(E))N · (w(s) − wOPT ). Sin
e
w(s) ≤ r(E) · wmax and wOPT ≥ 0, we obtain the upperbound (1 − 1/r(E))N · D, where D := r(E) · wmax.If N := ⌈(ln 2) · r(E) · (log 2D)⌉, this bound is at most
1
2
. Sin
e the di�eren
e is not negative, by Markov's in-equality, the probability that the bound is less than 1 isat least 1/2. The di�eren
e is an integer implying thatthe probability of having found a minimum weight basisis at least 1/2. Therefore, the expe
ted number of goodsteps until a minimum weight basis is found is bounded by

2N = O(r(E) log D) = O(r(E)(log r(E) + log wmax)).By our 
onstru
tion, there are always exa
tly r(E) goodsteps. Therefore, the probability of a good step does notdepend on the 
urrent sear
h point. Hen
e, the expe
tednumber of generations until l good steps have been madeequals Θ(l|E|2/r(E)). Altogether, the expe
ted number ofiterations is bounded by
O(N |E|2/r(E)) = O(|E|2(log r(E) + log wmax)) .This 
on
ludes the proof.A slightly worse bound 
an be shown for the �tness fun
-tion f ′ by applying Proposition 3.6 instead of Proposition 3.5.Theorem 3.8. The expe
ted number of generations untilRLS or (1+1) EA working on the �tness fun
tion f ′ 
on-stru
ts a minimum weight basis is bounded by

O(|E|2(log |E| + log wmax)).Proof. By Proposition 3.1, it is su�
ient to 
onsider thesear
h pro
ess after having found a sear
h point s des
ribinga superset of a basis. Then, by Proposition 3.6, for ea
h stepthere exists a set of |E|−r(E) 1-bit �ips and a set of r(E) 2-bit �ips su
h that the total weight de
rease is w(s)−wOPT .The 
hoi
e of su
h a bit �ip is 
alled a good step. If the totalweight de
rease of the 1-bit �ips is larger than the totalweight de
rease of the 2-bit �ips, the step is 
alled a 1-step.Otherwise, it is 
alled a 2-step. Note that the notion of a2-step does not imply that we a
tually perform a 2-bit �ip,similarly for 1-steps and 1-bit �ips.Consider the sequen
e of all steps until a minimum weightbasis is rea
hed. Suppose that at least half of the required



steps are 2-steps. Consider only these 2-steps. The probabil-ity of a good 2-bit �ip equals Θ(r(E)/|E|2). The expe
tedweight de
rease of su
h a 2-bit �ip in a 2-step is at least
1
2
(w(s) − wOPT )/r(E), resulting in a fa
tor not larger than

1−1/(2r(E)). Hen
e, we 
an adapt the proof of Theorem 3.7with N ′ := ⌈(ln 2) · 2r(E) · (log 2D′)⌉, D′ := |E| · wmax andobtain the bound O(N ′|E|2/r(E)) for the expe
ted numberof 2-steps. Sin
e the majority of all steps are 2-steps, the
laimed result follows.Now suppose that at least half of the required steps are1-steps and 
onsider only these 1-steps. The probability ofa good 1-bit �ip equals Θ(k/|E|) for k = |E| − r(E). Theexpe
ted weight de
rease of su
h a 1-bit �ip in a 1-step isat least 1
2
(w(s) − wOPT )/k, resulting in a fa
tor not largerthan 1 − 1/(2k). Again, we 
an apply the proof te
hniqueof Theorem 3.7 where N ′′ := ⌈2 · (ln 2) · k · (log 2D′)⌉ =

O(|E|(log |E| + log wmax)) takes the role of N . We obtainthe upper bound
O(N ′′|E|/k) = O(|E|(log |E| + log wmax))for the expe
ted number of 1-steps. Sin
e the majority ofall steps are 1-steps, the total number of steps is of the sameorder, whi
h is even smaller than the proposed bound.Neumann and Wegener [16, 17℄ show a lower bound of

Ω(|E|2 log r(E)) for a spe
ial 
lass of instan
es of the mini-mum spanning tree problem. Hen
e, Ω(|E|2 log r(E)) is alsoa lower bound for the minimum weight basis problem.We brie�y want to mention the bene�ts of more problem-spe
i�
 mutation operators. After having found a basis of amatroid, we are only interested in o�spring with the same
ardinality. The probability of su
h an o�spring 
an be in-
reased using the following two mutation operators: If RLS�ips two bits, it 
hooses randomly a 0-bit and randomly a1-bit. If s 
ontains k 1-bits, (1+1) EA �ips ea
h 1-bit withprobability 1/k and ea
h 0-bit with probability 1/(|E| − k).Using the modi�ed mutation operators, the probability ofa spe
i�
 element ex
hange for bases in
reases from Θ(1/|E|2)to Θ(r(E)−1(|E|−r(E))−1). Therefore, the bound of Theo-rem 3.7 
an be repla
ed by O(r(E)|E|(log r(E)+log wmax)+
|E| log |E|). In the 
ase of Theorem 3.8 we obtain the bound
O(r(E)|E|(log |E| + log wmax)).The expe
ted number of generations 
an be further re-du
ed by using parallel versions of (1+1) EA and RLS thatprodu
e several o�spring in ea
h iteration. The (1+λ) EAand λ-PRLS algorithm produ
e independently λ o�springfrom the single individual of the 
urrent population. Thesele
tion pro
edure sele
ts an individual with the smallest�tness value among the parent and its o�spring. In theproofs of Theorem 3.7 and Theorem 3.8 the probability ofa good step is O(r(E)/|E|2). Choosing λ := ⌈|E|2/r(E)⌉,this probability is in
reased to a positive 
onstant. As be-fore, the expe
ted number of good steps is bounded by
O(r(E)(log r(E)+log wmax)) and O(r(E)(log |E|+log wmax)),respe
tively. This leads to the following result.Theorem 3.9. The expe
ted number of generations until
λ-PRLS or (1+λ) EA with λ := ⌈|E|2/r(E)⌉ 
hildren 
on-stru
ts a minimum weight basis is bounded by
O(r(E) log wmax + |E| log |E|).Using the modi�ed mutation operator mentioned above,the probability of a good step redu
es to O(1/|E|) and we

obtain the same bound on the expe
ted number of genera-tions as in Theorem 3.9 already for λ := |E|.Neumann andWegener [18℄ also 
onsider multi-obje
tiveoptimization te
hniques for the (single-obje
tive) minimumspanning tree problem. They study the behavior of twomulti-obje
tive evolutionary algorithms 
alled SEMO andGSEMO. The analysis 
an be 
arried over to the minimumweight basis problem for matroids and results in a boundof O(r(E)|E|(r(E) + log |E| + log wmax)) on the number ofgenerations.
4. MATROID INTERSECTIONThe results presented in this se
tion are motivated bythe results for the maximum mat
hing problem in [8, 9℄.We 
onsider the matroid interse
tion problem whi
h is de-�ned as follows. Given two matroids M1 = (E, F1) and
M2 = (E, F2) on the same ground set E by their indepen-den
e ora
les, 
ompute a set X ∈ F1 ∩ F2 su
h that |X|is maximum. Let OPT denote su
h an optimal element of
F1 ∩F2. The well-known matroid interse
tion algorithm byEdmonds [3, 14℄ starts with X := ∅. In ea
h iteration, itsear
hes a shortest SX -TX-path in the auxiliary graph GX .This so-
alled augmenting path gives rise to X ′ ∈ F1 ∩ F2with |X ′| = |X|+1. The algorithm terminates if there is noaugmenting path.The auxiliary graph GX for X ∈ F1 ∩ F2 is de�ned asfollows. Its node set is E, the edges are given by AX ∪ BXwith AX := {(x, y) | y ∈ E \ X, x ∈ C1(X, y) \ {y}} and
BX := {(y, x) | y ∈ E \ X, x ∈ C2(X, y) \ {y}}. We set
SX := {y ∈ E \ X |X ∪ {y} ∈ F1} and TX := {y ∈ E \
X |X ∪ {y} ∈ F2}.Let the node sequen
e y0, x1, y1, . . . , xn, yn denote anyshortest SX -TX-path and de�ne X ′ := X \ {x1, . . . , xn} ∪
{y0, y1, . . . , yn}. Then this path is an augmenting path, i.e.,
X ′ ∈ F1 ∪ F2 and |X ′| = |X| + 1. In the EA setting, su
han augmentation step 
orresponds to simultaneously �ip-ping exa
tly the elements 
orresponding to the nodes of theaugmenting path.The above algorithm solves the matroid interse
tion prob-lem in O(|E|3θ) time, where θ is the maximum 
omplexityof both independen
e ora
les. Faster matroid interse
tionalgorithms are due to Cunningham [2℄ and Gabow andXu [6℄.We study the performan
e of evolutionary algorithms forthe matroid interse
tion problem. We assume that we aregiven rank ora
les r1 and r2 that 
ompute for any set X ⊆ Eits rank with respe
t to M1 and M2, respe
tively. Again, we
onsider the RLS and (1+1) EA algorithm. We 
onsider the�tness fun
tion

f(s) := −Φ(s) · |E| + |E(s)| ,where Φ(s) := 2|E(s)|−r1(E(s))−r2(E(s)). The expressionis dominated by Φ(s), whi
h measures the infeasibility of
E(s). If E(s) is a 
ommon independent set, this �rst termvanishes and the �tness of s equals the 
ardinality of E(s).A more pre
ise way to measure the infeasibility of E(s)is to repla
e Φ(s) by Ψ(s) := min{|X||X ⊆ E, E(s) \ X ∈
F1∩F2}|. However, Ψ(s) 
annot be easily 
omputed. Hen
e,we resort to Φ(s). Note that 1

2
Φ(s) ≤ Ψ(s) ≤ Φ(s) ≤ 2|E|holds for all s ∈ {0, 1}|E|.First, we 
onsider the phase until a 
ommon independentset has been 
onstru
ted. Note that the empty set is a trivial




ommon independent set. Hen
e, the �rst phase 
an also beskipped entirely.Proposition 4.1. The expe
ted number of generationsuntil RLS or (1+1) EA working on the �tness fun
tion f
onstru
ts a 
ommon independent set is bounded by
O(|E| log |E|).Proof. Suppose E(s) 6∈ F1 ∩ F2 holds for the initialsear
h point s. The �tness fun
tion f is de�ned in su
ha way that the infeasibility Φ(s) never in
reases. There areat least 1

2
Φ(s) elements in E(s) that lead to a de
rease ofthe infeasibility Φ(s). The probability that a step de
reasesthe infeasibility Φ(s) is at least 1

2
· Φ(s)

2|E|
for RLS and at least

1
2e

· Φ(s)
2|E|

for (1+1) EA. The last probability is a lower boundfor (1 − |E|−1)|E\E(s)| · (1 − (1 − |E|−1)Φ(s)/2), whi
h de-notes the probability that the 
omplement of E(s) remains�xed and at least one of 1
2
Φ(s) infeasible elements is removedfrom E(s). Hen
e, the expe
ted number of generations until

s des
ribes an element in F1 ∩F2 is bounded from above by
Φ(s)
X

i=1

4e|E|

i
= O(|E| log |E|) .This 
on
ludes the proof.Next, we 
onsider the sear
h pro
ess after having found a
ommon independent set X ∈ F1 ∩ F2. We show that thelength of a shortest SX -TX-path in GX 
an be bounded interms of |X| and |OPT |.Proposition 4.2. Let ε > 0 and X ∈ F1 ∩ F2 su
h that

|X| < (1 − ε)|OPT |. There exists an SX -TX -path in GXwith length at most 2⌈1/ε⌉ − 2.Proof. It was shown by Cunningham [2℄ that GX 
on-tains k := |OPT | − |X| disjoint SX -TX-paths. Hen
e, thereexists an SX -TX-path with length at most 2⌊|X|/k⌋. Sin
e
|X| < (1−ε) |OPT |, we have |X|/k < (1−ε)/ε < 1/ε. Thus,the length of this path is bounded by 2⌈1/ε⌉ − 2.The bound on the length of an augmenting path allowsus to lower bound the probability that RLS or (1+1) EA�nds su
h an augmenting path. These bounds lead to upperbounds on the expe
ted number of generations until |E(s)|is in
reased, and �nally, until an (1 − ε)-approximation is
onstru
ted.Theorem 4.3. For ε > 0, the expe
ted number of genera-tions until RLS or (1+1) EA working on the �tness fun
tion
f 
onstru
ts an (1−ε)-approximation of a maximum elementof F1 ∩ F2 is bounded by O(|E|2⌈1/ε⌉).Proof. By Proposition 4.1, it su�
es to 
onsider thesear
h pro
ess after having found a sear
h point s with
E(s) ∈ F1 ∩ F2. The �tness fun
tions f is designed su
hthat only steps leading to sear
h points s′ des
ribing 
om-mon independent sets of at least the same 
ardinality as sare a

epted. Assume that |E(s)| < (1 − ε)|OPT |.By Proposition 4.2, there exists an augmenting path in
GE(s) of length at most l := 2⌈1/ε⌉ − 2. The (1+1) EA�ips exa
tly the l + 1 elements 
orresponding to the nodesof this path with probability Ω(|E|−l−1). The RLS algo-rithm needs l/2 2-bit �ips shortening the augmenting pathand a �nal 1-bit �ip to in
rease |E(s)|. The probability that

this happens within the next l/2 + 1 steps is bounded frombelow by Ω((|E|−2)l/2 · |E|−1) = Ω(|E|−l−1). Hen
e, the ex-pe
ted number of generations to improve |E(s)| is boundedby O(|E|l+1) for (1+1) EA and by O(l · |E|l+1) for RLS. Amore 
areful analysis for RLS yields the bound O(|E|l+1)(see [8, 9℄). Sin
e |OPT | ≤ |E|, the expe
ted number ofgenerations until RLS or (1+1) EA 
onstru
ts an (1 − ε)-approximation of a maximum element of F1∩F2 is boundedby O(|E| log |E|) + O(|E|) · O(|E|l+1) = O(|E|2⌈1/ε⌉).Giel and Wegener [8, 9℄ have shown that RLS and(1+1) EA require exponential optimization time for 
er-tain bipartite maximummat
hing problems. Sin
e bipartitemat
hing is a spe
ial 
ase of matroid interse
tion, we knowthat the matroid interse
tion problem 
annot be solved byRLS or (1+1) EA in polynomial time.
5. WEIGHTED MATROID INTERSECTIONIn the weighted matroid interse
tion problem we addition-ally 
onsider a weight fun
tion w : E → N whi
h assignsa non-negative weight w(e) to ea
h element e ∈ E of theground set. The task is to 
ompute a 
ommon independentset X ∈ F1 ∩ F2 su
h that its weight w(X) :=

P

e∈X w(e)is maximum.Similar to the unweighted 
ase we 
onsider the �tnessfun
tion
f(s) := −Φ(s) · wub +

X

e∈E(s)

w(e) ,where wub := |E| ·wmax is an upper bound on the weight ofany subset of E.Note that the RLS algorithm is not suited for the weightedmatroid interse
tion problem sin
e, in general, simultaneous�ips of more than two bits are required. In the unweighted
ase, a long augmenting path 
an be broken into a series of2-bit �ips maintaining the �tness value and one �nal 1-bit�ip. In the weighted 
ase, there are simple examples of pathsof length �ve where su
h a de
omposition into a sequen
e of2-bit �ips with non-negative di�eren
e of the �tness valuedoes not exist.Although bit �ips of at most two bits are not su�
ient inthe weighted 
ase, it is possible to obtain an 1
2
-approximationusing only bit �ips of at most three bits. We restri
t our-selves in the following to this spe
ial setting and analyze theexpe
ted number of generations to obtain an 1
2
-approximation.Proposition 5.1. Let s be a sear
h point su
h that its�tness value f(s) 
annot be improved by �ipping at mostthree bits. Then w(s) ≥ 1

2
wOPT holds.Proof. De�ne A := OPT and B := E(s). Sin
e the�tness value f(s) 
annot be improved by �ipping one or twobits of s, we have C1(B, a) 6= ∅ and C2(B,a) 6= ∅ for all

a ∈ A \ B. De�ne X := A \ B = {x1, . . . xk}.By Proposition 3.3, there exist sets Y ′ = {y′
1, . . . , y

′
k} ⊆

B \ A and Y ′′ = {y′′
1 , . . . , y′′

k} ⊆ B \ A su
h that y′
i ∈

C1(B,xi) and y′′
i ∈ C2(B, xi) for 1 ≤ i ≤ k. Sin
e the�tness value f(s) 
annot be improved by �ipping at mostthree bits of s, we have w(xi) ≤ w(y′

i)+w(y′′
i ) for 1 ≤ i ≤ k.Summing up these inequalities yield w(A \ B) = w(X) ≤

w(Y ′) + w(Y ′′) ≤ 2w(B \ A). Hen
e, w(s) ≥ 1
2
wOPTholds.



In order to analyze the expe
ted number of generationsuntil an 1
2
-approximate solution is found we prove that thereexists at least one bit �ip with a 
ertain weight in
rease.Proposition 5.2. Let s be a sear
h point su
h that w(s) ≤

( 1
2
− ε) wOPT holds for some ε > 0. Then there exists ana

epted bit �ip involving at most three bits with a weightin
rease of at least 2ε

|E|
wOPT .Proof. De�ne A := OPT , B := E(s) and X := A \ B =

{x1, . . . , xk}. We use the index sets I ′ and I ′′ to denotethose elements of X whose addition to B 
auses a 
y
le inthe matroid M1 and M2, respe
tively.
I ′ := {i | 1 ≤ i ≤ k, C1(B, xi) 6= ∅}

I ′′ := {i | 1 ≤ i ≤ k, C2(B, xi) 6= ∅}By Proposition 3.3, there exist a set Y ′ = {y′
i | i ∈ I ′} ⊆

B \ A su
h that y′
i ∈ C1(B, xi) for all i ∈ I ′. Likewise,there exists a set Y ′′ = {y′′

i | i ∈ I ′′} ⊆ B \ A su
h that
y′′

i ∈ C2(B, xi) for all i ∈ I ′′. We de�ne the weights wi, w′
iand w′′

i for 1 ≤ i ≤ k as follows:
wi := w(xi)

w′
i :=

(

w(y′
i) if i ∈ I ′

0 otherwise
w′′

i :=

(

w(y′′
i ) if i ∈ I ′′

0 otherwiseBy assumption, w(B) ≤ ( 1
2
−ε)w(A) holds. Hen
e, we have

w(A\B)−w(B\A) ≥ ( 1
2
+ε)w(A). Sin
e w(B\A) ≤ w(B) ≤

( 1
2
−ε)w(A), it follows that w(A\B)−2w(B\A) ≥ 2ε w(A).We have

k
X

i=1

wi − w′
i − w′′

i = w(X) − w(Y ′) − w(Y ′′)

≥ w(A \ B) − 2w(B \ A) ≥ 2ε w(A)Hen
e, there exists an i ∈ {1, . . . , k} su
h that wi − w′
i −

w′′
i ≥ 2ε

k
w(A). Consider the bit �ip that adds the element

xi and removes the elements y′
i and y′′

i if i ∈ I ′ and i ∈
I ′′, respe
tively (note that y′

i and y′′
i might be identi
al).This bit �ip involves at most three bits and has a weightin
rease of at least 2ε

|E|
w(A). By 
onstru
tion, the resultingbit string en
odes a 
ommon independent set and the bit�ip is a

epted.Now we 
an prove our main result, the expe
ted number ofgenerations for an 1

2
-approximation of the weighted matroidinterse
tion problem.Theorem 5.3. The expe
ted number of generations until

(1 + 1) EA working on the �tness fun
tion f 
onstru
ts an
1
2
-approximation of a maximum weight element of F1∩F2 isbounded by O(|E|4(log r+log wmax)), where r := min{r1(E),

r2(E)}.Proof. By Proposition 4.1 (whi
h also holds for theweighted 
ase), it su�
es to 
onsider the sear
h pro
ess af-ter having found a sear
h point s with E(s) ∈ F1 ∩F2. The�tness fun
tion f is designed su
h that only steps leading tosear
h points s′ that des
ribe 
ommon independent sets ofat least the same weight as s are a

epted.

Now 
onsider any sear
h point s with E(s) ∈ F1 ∩F2 and
w(s) < 1

2
wOPT . De�ne ε := 1

2
− w(s)

wOP T
, i.e., w(s) = ( 1

2
−

ε)wOPT holds. By Proposition 5.2 there exists an a

eptedbit �ip involving at most three bits with a weight in
rease ofat least 2ε
|E|

wOPT . Su
h a step is 
alled a good step. A goodstep de
reases the di�eren
e ε · wOPT between the weight
w(s) of the 
urrent sear
h point s and 1

2
wOPT by a fa
tornot larger than 1 − 2/|E|. Hen
e, after N good steps, thedi�eren
e between w(s) and 1

2
wOPT is bounded from aboveby (1 − 2/|E|)N · ( 1

2
wOPT − w(s)). Sin
e wOPT ≤ r · wmaxand w(s) ≥ 0, we obtain the upper bound (1− 2/|E|)N · D,where D := 1

2
r · wmax.If N := ⌈(ln 2) · |E|

2
· log(3D)⌉, this bound is at most 1

3
.The di�eren
e is half-integral whi
h implies that we havea
tually rea
hed an 1

2
-approximation after at most N goodsteps. The probability of a good step is bounded from belowby Ω(|E|−3). Hen
e, the expe
ted number of generations for

N good steps is bounded by
O(N |E|3) = O(|E|4(log r + log wmax)) .This 
on
ludes the proof.Consider the following modi�
ation of the RLS algorithm.Choose b ∈ {0, 1, 2} randomly. If b < 2 pro
eed as before.Otherwise, 
hoose (i, j, k) ∈ {(a, b, c) | 1 ≤ a < b < c ≤ |E|}randomly and �ip the i-th, j-th and k-th bit of s. We 
allthis algorithm RLS3.Sin
e we restri
t ourselves to bit �ips involving at mostthree bits, all good steps that are a

epted by the (1+1) EA
an also be a
hieved using RLS3. Moreover, the proba-bility of a parti
ular bit �ip is again bounded from belowby Ω(|E|−3). Hen
e, Theorem 5.3 does not only hold for(1+1) EA, but also for RLS3.

6. INTERSECTION OF THREE OR MORE
MATROIDSFurthermore, the result of Theorem 5.3 
an be easily gen-eralized to the interse
tion of p matroids Mi = (E,Fi),

1 ≤ i ≤ p. The task is to 
ompute an independent set
X ∈

T p
i=1 Fi with maximum weight. This problem is NP-hard for p ≥ 3, as �nding a Hamiltonian 
ir
uit in a dire
tedgraph is a spe
ial 
ase; see [13℄.Similar to the previous 
ase of p = 2, there are situationsin whi
h simultaneous �ips of at least p+1 bits are required.Therefore, we do not 
onsider the RLS algorithm in thisse
tion. A modi�
ation of the RLS algorithm similar to thatdes
ribed in the last paragraphs of the pre
eding se
tion isstill possible though.The de�nition of the fun
tion Φ(s) is adjusted in theobvious way. The bound of Proposition 4.1 in
reases to

O(p|E| log |E|). The results of Proposition 5.2 
arry overto the interse
tion of p matroids, although the a
hieved ap-proximation ratio is worse.Proposition 6.1. Let s be a sear
h point su
h that w(s) ≤
( 1

p
− ε) wOPT holds for some ε > 0. Then there exists ana

epted bit �ip involving at most p + 1 bits with a weightin
rease of at least p ε

|E|
wOPT .The lower bound for the probability of pi
king a parti
u-lar bit �ip of at most p+1 bits redu
es to Ω(|E|−p−1). Thisobservation leads to the following generalization of Theo-rem 5.3.



Theorem 6.2. Given p matroids Mi = (E, Fi), 1 ≤ i ≤
p, the expe
ted number of generations until (1+1) EA work-ing on the �tness fun
tion f 
onstru
ts an 1

p
-approximationof a maximum weight element of T

1≤i≤p Fi is bounded by
O(|E|p+2(log r +log wmax)), where r := min{ri(E) | 1 ≤ i ≤
p}.Similar to the minimum weight basis problem we 
anuse parallel versions of (1+1) EA and RLS to redu
e thenumber of generations. Choosing the number of o�springper generation as λ := |E|p+1 improves the probability ofa good step from Ω(|E|−p−1) to a positive 
onstant. Asbefore, the expe
ted number of good steps is bounded by
O(|E|(log r + log wmax)). This leads to the following result.Corollary 6.3. Given p matroids Mi = (E, Fi), 1 ≤
i ≤ p, the expe
ted number of generations until (1+λ) EAwith λ := |E|p+1 
hildren working on the �tness fun
tion f
onstru
ts an 1

p
-approximation of a maximum weight ele-ment of T

1≤i≤p Fi is bounded by O(|E|(log r + log wmax)).
7. CONCLUSIONWe have analyzed the performan
e of (1+1) EA and RLSon a very general 
lass of 
ombinatorial optimization prob-lems ranging from very simple problems that 
an be solvedoptimally by the greedy method up to NP-hard problems.Our results provide an indi
ation of the enormous power ofevolutionary algorithms from a theoreti
al point of view. Itturns out that the very general and abstra
t stru
ture ofmatroid optimization problems su�
es to lead evolutionaryalgorithms into promising dire
tions and to �nally obtainoptimal or at least provably good solutions after only poly-nomially many iterations.A
knowledgements. The authors thank Alexander Souzafor helpful dis
ussions on the topi
 of this paper.
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