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In an industry project with a German car manufacturer we are faced with the challenge

of placing a maximum number of uniform rigid rectangular boxes in the interior of a car

trunk. The problem is of practical importance due to a European industry norm which

requires car manufacturers to state the trunk volume according to this measure.

No really satisfactory automated solution for this problem has been known in the

past. In spite of its NP hardness, combinatorial optimization techniques, which consider
only grid-aligned placements, produce solutions which are very close to the one achievable

by a human expert in several hours of tedious work. The remaining gap is mostly due
to the constraints imposed by the chosen grid.

In this paper we present a new approach which combines the grid-based combinato-

rial method with Simulated Annealing on a continuous model. This allows us to explore

arbitrary orientations and placements of boxes, hence closing the gap even further, and

– in some cases – even surpass the manual expert solution.
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The implemented software system allows our industrial partner to incorporate the

trunk volume in a very early stage of the car design process without relying on a repeated

and cumbersome manual evaluation of the volume.

Keywords: Trunk Packing; Car Design; Simulated Annealing; Combinatorial Optimization; Com-

putational Geometry.

1. Introduction

Geometric packing problems are of great interest to the communities of Computa-

tional Geometry1,2 and Combinatorial Optimization3,4,5,6 due to their great impor-

tance for industrial applications. The packing problem considered in this paper arose

from a joint project with a major German car manufacturer who is interested in

measuring the volume of a trunk according to the German standard DIN 70020. The

reason for the existence of this standard is that the continuous volume of a trunk

does not reflect its actual storage capacity, since the baggage to be stored is usually

discrete. DIN 70020 asks for the number of rigid 200mm×100mm×50mm = 1 liter

boxes, that can be packed into the trunk.

Figure 1. Physical measurement according to DIN 70020

So far this task of determining the volume of a trunk required cumbersome

manual work by an experienced engineer who packs the trunk by hand as seen in

Fig. 1. Since design decisions also depend on their effect to the volume of the trunk,

the engineers estimate the volume by manually placing boxes upon visual judgment

with a CAD system into a virtual model of the trunk.

An industrial-strength automated solution to the problem has to meet the fol-

lowing requirements:

• Boxes are not allowed to overlap with each other.

• Boxes must not pierce the boundary of the trunk by more than a predefined

threshold (which models its deformability).

• The system has to deal with any output of the CAD system: input models

as exported from the CAD system are just a set of triangles; they might

exhibit holes, dangling triangles, and typically do not form a manifold.
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There is no notion of inside or outside the trunk in this data.

• The number of packed boxes should never fall short of the expert’s solution

by more than 1% or 10 liters.

• The solution for a problem instance should be computed within a time-

frame of about one day.

Previous Work

Automated solutions known in the past have never been able to get close to the

quality of a human expert. Ding and Cagan7 published an approach that is suited

for the Society of Automotive Engineers (SAE) standard used in the USA. This

standard differs significantly from the European norm. It defines a luggage set

consisting of objects varying from 6 to 67 liters. Therefore, our software has to

handle far more objects than in the SAE case.

NP-Hardness of our packing problem was established in a recent result8, but

still, in the same paper a first almost industrial-strength solution was presented

that using a discretization model and techniques from combinatorial optimization

produced solutions very close to the ones achievable by a human expert. It only

rarely fell short of the prescribed bounds for the solution quality, which was due

to the fact that this algorithm only allowed axis-aligned and discrete placements of

the boxes in a grid. For these “bad” problem instances – which for example arise in

trunks with side-compartments holding tightly a few boxes (see Fig. 2)–, there was

also no hope to obtain a better solution using this approach, as the discretization

would have had to adapt locally to the geometry of the trunka.

Figure 2. Arbitrary placement necessary in side-compartments next to the wheelhouse

On the theory side, results in this area have been rather discouraging. Already

the 2-dimensional problem of packing axis-parallel unit squares into a polygon with

holes is NP-complete9, even though approximation schemes are available 10. For

polygons without holes, it is conjectured1 that the problem is polynomially solvable.

aThese pathological instances were discovered when evaluating the former system in the industrial

production environment.
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The more general problem of packing (a×b) axis-aligned rectangles inside a polygon,

is not even known to be in NP, partly because the representation of an optimum

solution might be arbitrarily complex4. The ’Open Problem Project’ website11,12

keeps track of the current status of these problems (see item 55, 56).

Our Contribution

In this paper we overcome the weakness of the previous algorithm and present

an industrial-strength solution to the trunk packing problem which almost always

comes very close to the manual solution and in some cases even surpasses it. This

breakthrough is achieved by allowing arbitrary orientation and placements of the

boxes, not restricting to axis-aligned placements on a grid as in the combinatorial

algorithm8.

Allowing such a continuous model leads to a very high-dimensional global op-

timization problem for which standard methods like Simulated Annealing13 are

typically used. Unfortunately, applying these techniques in a straightforward man-

ner yields solutions far worse than the discretization algorithm. Only by combining

both techniques we were able to obtain the industrial-strength system.

This paper elaborates on the details of the synthesis of both methods. Roughly

speaking, we were able to eliminate the heating process typical for a simulated

annealing procedure by using a solution from the discretization algorithm as a

starting configuration. Furthermore we devised special procedures for creation of

new boxes, a relaxation by a Monte Carlo simulation, and pruning of undesired

boxes. Due to physical analogies, we call our method Specialized Grand Canonical

Simulated Annealing.

The resulting software system meets all requirements of our industrial partner

and is currently being installed for use in the actual design process of new cars.

2. Modeling the Problem

We are provided with the digital data of the car trunk by a set of triangles exported

from a free-form CAD system. Since the original model in the CAD system often

consists of many parts which are not necessarily tightly joined, the resulting set

of output triangles neither bound a closed volume nor do they form a manifold.

This ’low quality’ of the input data requires additional care in the processing of our

algorithms. In the following section we will present two ways to model the trunk

packing problem such that optimization techniques can be successfully applied.

2.1. Discretizing Space and Box Orientations – a Combinatorial

Approach

An earlier approach8 proposes a discretization of space and box orientations by

constructing a three-dimensional cubic grid which approximates the interior of the

trunk. Boxes can only be placed anchored at a grid cell and in alignment with the
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grid axes, so the placement of a box is determined by six parameters: the anchor cell

with coordinates (x, y, z), and the orientation (w, h, d) which describe the extension

of the box in width, height and depth (measured in unit cells). The spacing w̃ of

the cubic grid is chosen such that k · w̃ = 50mm for some integer k, and hence the

orientation (w, h, d) can be any permutation of the set {1k, 2k, 4k}. As the following

stages are very sensitive to a “good” initial placement and orientation of the cubic

grid, the latter is chosen such that the number of cells contained in the interior of

the original trunk volume is maximized. See Fig. 3 for an example.

Figure 3. Cubic grid approximating the interior of a trunk

The slightly modified goal is now to place as many boxes in the cubic grid

such that each box consists only of cells approximating the interior of the trunk,

and no two boxes share a cell. This problem can be formalized using the following

construction: Let G(V,E) be the graph with node set V and edge set E. There

is a node vx,y,z,w,h,d ∈ V iff the box anchored at (x, y, z) and orientation (w, h, d)

consists only of cells in the interior of the trunk. There is an edge e = (v, w) ∈ E iff

the two box placements corresponding to v and w intersect, i.e., both boxes share

a common cell. G is called the conflict graph. Packing the largest number of boxes

in the cubic grid is then equivalent to determining the maximum independent or

maximum stable set in the conflict graph G.

Several techniques from integer linear programming and combinatorial opti-

mization were applied8 to solve this stable set problem. This approach produced

packings which most of the time were sufficiently close to the prescribed quality

bound of our industrial partner. Though, when evaluating this system in the in-

dustrial production environment, some instances showed up, where the results were

not satisfactory.
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The inherent problem of this approach is that it chooses right at the beginning

a discretization of space and orientations which might not accommodate to the

local geometry of the trunk. While some choice of the grid axes might be suitable

for most regions of the trunk (e.g., typically it is reasonable to have two grid axes

parallel to the bottom of the trunk), there are areas where a different orientation

is necessary if no space should be wasted. This happens in particular along curved

parts of a trunk, see for example in Fig. 4, where the restriction to one cubical grid

system wastes a lot of volume along the curved lid (left picture) compared to a

solution with arbitrary rotations (right picture).

Figure 4. Curved lid

Similar difficulties arise in trunks with side compartments which tightly hold a

few boxes. If the grid is not aligned with these places, volume is wasted, see also

Fig. 2.

2.2. Arbitrary Placement of Boxes – a Simulated Annealing

Approach

To overcome the problems with these pathological cases, we have to extend our

model to account for arbitrary positions and orientations of the boxes. In such a

model the placement of a box can be characterized by a 6-tuple (x, y, z, θ, ϕ, ψ) ∈ R
6

(not Z
6 as in the discrete model). We are interested in a collection of n such 6-tuples

such that their corresponding box placements do not overlap and are completely

contained in the interior of the trunk. The value n should be as large as possible

such that a valid placement still exists.

Let us first focus on the case where n is fixed, and we are only looking for a valid

placement of n boxes. This 6n-dimensional problem is far too complicated to be

solved using techniques from convex optimization, hence generic optimization tech-

niques like Simulated Annealing (SA) are the method of choice. This technique can

be implemented by designing a suitable potential or energy function U : R
6n → R

+
0

from possible configurations, i.e., placements of the n boxes, to the real numbers.

Valid configurations should result in a low potential or energy value whereas invalid

configurations due to overlap or non-containment in the trunk should be assigned
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high potential values. The goal is to find a global minimum (also called ground

state) of this potential function U . The approach of SA is to define transitions

from one configuration to another and then basically start a random walk on the

implicitly defined (potentially infinite) graph. At the beginning, at “high tempera-

ture”, transitions might happen even to configurations with a higher energy value,

but with decreasing temperature, configurations of lower energy are preferred. In

our solution we enhance the basic SA approach with a method for growing and

shrinking the size of a configuration (i.e., the value n).

Both, a suitable definition of a potential function for our problem as well as some

extensions to the basic SA process will be the topic of the rest of this paper. The

latter extensions were crucial for obtaining solutions superior to the discretization

approach.

3. Simulated Annealing – Potential Function and Basics

In this section we will derive a potential function for the trunk packing problem,

give a brief overview of the employed simulated annealing process and provide some

details about an efficient evaluation procedure for the potential function.

3.1. The Potential Function

It is natural to split the potential into two parts. On one hand we have the pen-

etration of the exterior that we measure by the so called wall potential UW . On

the other hand we have a contribution from pairwise interaction of the boxes. The

interaction term consists of the intersection volume UV and the interpenetration

depth UI of two boxes. We define our potential as a convex combination of these

three parts. Let x = (x1, . . . , xn) be the coordinates of a configuration where xi is

the set of the coordinates for box i. Then, we have for the potential

U(x) = λW

n∑

i=1

UW (xi) + λV

n∑

i=1

i−1∑

j=1

UV (xi, xj) + λI

n∑

i=1

i−1∑

j=1

UI(xi, xj), (1)

where λW , λV , λI ≥ 0 are the respective weights for the three contributions. Since

the adaption of the weights during the algorithm should not effect the temperature

of our system, we maintain λW + λV + λI = 1.

In the next paragraph we develop the contribution of the pairwise box interac-

tion to the potential. For the sake of simplicity, we restrict ourselves to the two-

dimensional case. The extension to three dimensions should be straight forward.

Interaction Given two boxes by the open sets Bi, Bj defined by their coordinates

xi, xj for position and orientation, we define the intersection volume UV as

UV (xi, xj) =

∫

Bi∩Bj

dV. (2)
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Using only the intersection volume UV and neglecting the interpenetration depth

UI in the potential would be sufficient in theory. But the overlap is not qualified

very intuitively in some exceptional situations. Therefore we do not only consider

the intersection volume, but also the penetration depth of two boxes.

b
ε

ϕ

Figure 5. Motivation for penetration depth

Consider two rectangles that touch at an edge with length b. If we now push

the rectangles into one another by ε orthogonally to that edge, we get an overlap

UV = b · ε as depicted in Fig. 5. Now assume that the two rectangles touch by

an edge and a vertex. The overlap that results from a penetration of ε is given by

UV = ε2

sin 2ϕ
. Since ε ¿ b the overlap resulting from the same penetration is much

smaller in the second case opposing our intuition. Therefore, we define an additional

measure that is more adequate in such situations.

Definition 1. Given a metric space (X, |·|), the penetration depth of two open sets

A,B ⊂ X is defined as

min{|t| : A ∩ (t + B) = ∅, t ∈ X}. (3)

Informally speaking, the penetration depth is the distance that one object needs

to be translated in order to dissolve the intersection. We set the interpenetration

depth UI(xi, xj) of two boxes to their penetration depth and get a further contribu-

tion to the potential in addition to the intersection volume UV . We cannot simply

replace UV by UI because the latter has also its drawbacks. Consider the left situ-

ation depicted in Fig. 5. The penetration depth is the small vertical distance ε. If

the rectangles are blocked in that direction, i.e., vertical moves are not permitted

by the boundary or other rectangles, then the only way to reduce the overlap is by

moving horizontally. But for a great deal of horizontal moves the potential looks

the same with respect to the penetration depth, namely ε and thus involves a lot

of iterations to get out.
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Wall Potential In two-dimensional packing problems one often has a polygon that

defines the container. There it is possible to take its complement and treat it like

an obstacle. In that case the penetration depth of the boxes with the boundary is

well defined.

But this does not hold in our particular case. The data of the trunk is given as

a triangular mesh with a penetration threshold pT for each triangle. We may not

assume any further properties on the mesh, e.g., that it is a manifold, watertight

or that the normals are oriented consistently.

Though, we can use the principle of the penetration depth similar to the two

dimensional case, but we must adjust it to our setting. The penetration depth for

each box is defined per triangle instead of the whole body. Thereby, it is also possible

to treat certain regions differently, e.g., the bottom of a trunk would hardly give

way in contrast to the sides where a few millimeters are always acceptable.

This introduces some problems with respect to the total potential. The pene-

tration depth for a given box cannot be computed as the sum of the penetration

depths of all involved triangles since then the value would increase if the boundary

is triangulated finer. Therefore, we use the maximum of all involved triangles. It is

also possible to use the mean of all positive contributions.

The penetration depth for a triangle with respect to a given box equals the

minimum distance to pull it apart from that box. Thereby, the wall-potential is

positive only for those boxes intersecting the boundary. But this is definitely not

what we want for boxes completely located in the exterior of the trunk.

pR

p

UW

exteriorinterior
with boundary

intersection

pT

Figure 6. Wall potential of a box moving through the boundary

It is even more counter-intuitive if we think of a box moving from the interior to

the exterior as illustrated in Fig. 6. Its potential increases to a maximum attained

when the center crosses the boundary and then decreases symmetrically to zero

again until it does not touch the trunk anymore.

Therefore, we define the restricted penetration depth pR that only considers

translations that would move the box back inside the trunk. Hence, we have to

define what is inside and outside with respect to the trunk in a way we can use it for
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computation. But as pointed out earlier, there is an ambiguity in the representation

of the trunk since we cannot expect the model to be watertight.

Thus, the restricted penetration pR is infeasible to compute. But since it coin-

cides with the penetration depth p in certain regions, we just use the latter and

ensure that we report “infinity” in case of p < pR.

We define the wall potential UW in terms of a predicate that tells us whether a

box should be treated as outside the trunk and use the maximal penetration depth

otherwise:

UW (xi) =

{
∞ if outside(xi)

max{p(xi, τ) : τ ∈ Triangles} otherwise
, (4)

where p(xi, τ) is the minimum distance that the triangle τ has to be translated

such that it does not intersect the box. We must design the outside predicate very

carefully such that it is robust but nevertheless efficient to evaluate. This issue is

addressed in Sect. 4.3

Observe that the contribution of a particular box to the potential has a short

range, i.e., it is completely determined by objects in the neighborhood. We can

benefit from this when evaluating the potential.

3.2. Monte Carlo algorithm

In 1953, Metropolis et al. introduced the Monte Carlo importance-sampling

algorithm14. It’s a method that is used in statistical physics to predict or check

macroscopic properties of complex (i.e., many-body) systems that result from an

assumed potential.

In nature, realizations with different energies of such a statistical ensemble do

not appear with the same probability. The configurations that lead to a lower po-

tential energy are much more likely to occur. In our case we consider the Boltzmann

distribution that suggest a probability for a configuration with potential energy U

that is proportional to e−βU where β is the inverse temperature. We treat β simply

as a parameter and only refer to its physical meaning to get an intuition.

Since it is infeasible to enumerate all configurations, we try to limit the evalua-

tions of the potential to important configurations. Given a starting configuration, we

want to “walk” through the configuration space guided by our potential. Therefore,

we propose trial moves that are accepted depending on the change in the potential.

If the proposed configuration has a lower energy we accept it with probability 1.

Otherwise, we accept it with a probability p = e−β·∆U where ∆U is positive. This

scheme is depicted in Fig. 7.

It is absolutely necessary to accept steps that preliminary lead to a higher energy

in order to escape from local minima. This behavior is controlled by the parameter

β. The higher its value, the more unlikely is the worsening in terms of the potential

energy.

Since the boxes in the middle are much less flexible than the boxes at the



December 16, 2005 18:17 WSPC/Guidelines trunk-ijcga

Packing a Trunk – now with a Twist! 11

boundary, each box has its own range from that we choose our trial moves. We

dynamically adapt these ranges by increasing it if a move is accepted and decreasing

it otherwise. Thereby, we achieve that the acceptance rate settles down at 50 %.

Since the potential seen by a box does not look the same in every direction, we

do not adjust the ranges for all coordinates in the same way. We rather distribute

the amount of the change to the coordinates with respect to the suggested trial

move.

We do not move all boxes simultaneously but one randomly picked in each

iteration.

3.3. Evaluating the Potential Function efficiently

This is the most time-consuming task in our algorithm. Profiling experiments have

shown that more than 90 % of the CPU-time is spent in the routines for the com-

putation of the intersection volume and the penetration depth. Again, we consider

the two dimensional case to illustrate the idea.

First, we describe a method that decides whether two rectangles overlap. After-

wards, we slightly extend the method such that it also computes the penetration

depth with only small additional effort. At the end of this section, we illustrate how

to compute the overlapping area.

It can be easily shown that the definition of the penetration depth is equivalent

to

min{|~t| : ~t ∈ A ⊕ (−B)}, (5)

i.e., it is in the complement of the Minkowski sum of both sets. Actually, we do not

compute any Minkowski sums here but use this technique to prove the correctness

of our approach.

By the definition of the penetration-depth of two rectangles Ri and Rj , the

minimum is attained at the border B of the set Ri ⊕ (−Rj) which is determined

by at most eight constraints that are parallel to the sides of the two rectangles as

seen in Fig. 8.

Since we consider the penetration depth with respect to the Euclidean distance,

it coincides with the radius of the maximal circle centered at the origin that fits

into B.

evaluate
Potential U1

- trial move - evaluate
Potential U2

-else

´
´

´
´

´
3́

p = e−β·∆U

accept

-
else

reject

?

∆U = U2 − U1 > 0

oracle

Figure 7. Metropolis Monte Carlo Scheme
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Ri

Rj

~t

B

Figure 8. Determining the penetration depth

By elementary geometry the vector pointing from the origin to the boundary

point is perpendicular to the corresponding face. Hence, the direction of a trans-

lation that determines the penetration depth is a normal of one of the faces that

define B.

By the separating axis theorem for convex polyhedra15, these normals are either

the ones of the two polyhedra or are parallel to the cross product of an edge of the

first polyhedron and an edge of the second one or vice versa. In the special case of

rectangles, those normals are exactly the directions of the edges of the rectangles.

Ri

Rj

Figure 9. Separating axis

We consider the projections of the objects on one of those directions now. Hence,

we have two intervals each corresponding to one of the polyhedra. The separating

axis theorem tells us further that the two polyhedra are disjoint iff for at least one

of those directions the two intervals are disjoint.

Thus, we have a test that determines disjointness of two rectangles. In the

worst case it requires to test four directions since at least half of the eight edges

are parallel. As soon as we get two disjoint intervals we are done and report that
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there is no overlap and the penetration depth is zero.

Furthermore, we can modify this test slightly in order to get a method that

computes the penetration depth directly at not much more cost. Assume we test

in direction k = 1, . . . , 4 and observe an overlap of tk of the intervals that result

from the projection. We construct a translation ~tk with |~tk| = tk pointing in the

direction of the projection.

Rj

Ri

~t

Figure 10. Penetration depth by projection

If we translate the corresponding rectangle by ~tk the two rectangles become

disjoint because then we can place a separating hyperplane with normal ~tk be-

tween them. Recall that the value for the penetration depth is attained by a vector

that points into one of the tested directions. Thus, we simply report the minimum

absolute value of all those tk.

Intersection volume of two boxes Since boxes are convex polyhedra their in-

tersection can be simply computed by solving a halfspace intersection problem.

In general, the intersection body consists of trimmed facets originating from both

boxes. In order to find these trimmed facets, we triangulate the boundary of every

box and clip its triangles by the three pairs of parallel planes defining the other

box. Clipping a triangle by a plane may produce a quadrangle which we decom-

pose into two triangles for further clipping. This basic geometric operation can be

implemented very easily and results in a highly specialized and effective routine

for determining a set T of oriented triangles which form the boundary of the in-

tersection body. Connectivity information among these triangles is not required for

computing the desired volume: Let ∆ = (~a∆,~b∆,~c∆) denote an oriented triangle of

T ; then, the volume V is given by

V =
1

6

∑

∆∈T

∣∣∣∣∣
1 1 1 1

~o ~a∆
~b∆ ~c∆

∣∣∣∣∣ , (6)

where ~o is an arbitrary fixed reference point. For numerical reasons, ~o should not

be too far away from the intersection volume. For example, the midpoint of the line

segment connecting the centers of both boxes is a good choice.
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Figure 11. Intersection figure by iterative clipping

Because of the short range of interaction, only boxes in the direct neighbor-

hood of a moving box contribute to its intersection volume and penetration depth.

Therefore we use a uniform grid as a space partitioning scheme to locate efficiently

all potentially interfering boxes and penetrated boundary triangles. The relatively

expensive computation of the intersection volume for two boxes is only executed if

the fast disjointness test (based on the separating axes theorem) fails. In this way

we succeed in performing thousands of trial moves per second in the Monte Carlo

simulation.

4. Simulated Annealing – The Efficient Implementation

This section is dedicated to our extensions and modifications of the simulated an-

nealing approach. At the beginning, we take a combinatorial solution from the

discrete model to eliminate the heating process, i.e., we avoid to equilibrate the

system at a very high temperature leading to strongly disordered configurations.

This issue is described in Sect. 4.5 in more detail.

In our algorithm, we iteratively apply a sequence consisting of

• a special creation procedure for new boxes,

• a relaxation period by a Monte Carlo simulation, and

• a randomly triggered destruction of the “worst” box.

Before we explain the special creation procedure and the destruction of boxes in

Sect. 4.4, we give some implementation details that are necessary for an efficient

simulation. During the relaxation period, we select with probability of 1

2
between

translational and rotational moves.

4.1. Translational Trial Moves

Let ∆x,∆y,∆z be three parameters defining the range

R = (−∆x,∆x) × (−∆y,∆y) × (−∆z,∆z) (7)
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from which the displacements ~t 6= 0 for the trial moves are picked uniformly at

random. We do nothing in the stationary case because it gets trivially accepted

and does not give any useful information. The potential change ∆U is given by

∆U = U(~r + ~t) − U(~r), (8)

where ~r is the old position and ~t ∈ R the displacement of the box. Now we consider

the two cases “Accepted” and “Rejected” separately.

Accepted In the case of an accepted trial move, we update the position of the box

and increase the parameters ∆x,∆y and ∆z by multiplying by a factor of 1+|tx|/|~t|,
1 + |ty|/|~t| and 1 + |tz|/|~t|, respectively.

Rejected If the trial move is rejected, we discard the trial move and decrease the

parameters ∆x,∆y and ∆z by dividing by 1 + |tx|/|~t|, 1 + |ty|/|~t| or 1 + |tz|/|~t|,
respectively.

4.2. Rotational Trial Moves

We choose quaternions as representation for orientations and rotations instead of

the Eulerian angles θ, ϕ and ψ because quaternions allow choosing rotations uni-

formly at random. For this purpose, we consider the interpretation

q = (cos ϑ, ~u · sin ϑ) (9)

which is a rotation by an angle of 2ϑ around an axis represented by the unit vector

~u.

Compared to translational trial moves, it is much harder to generate uniformly

distributed rotational trial moves. Suppose we pick the vector ~u uniformly at ran-

dom from [0, 1]3 and normalize it. This does not result in uniformly distributed

rotations, e.g., the axis ( 1√
3
, 1√

3
, 1√

3
) is more likely than others. Moreover, we want

to control the distribution of the rotation axes, similar to the range R (see Eq. 7)

from which the translation ~t was chosen.

We use the following scheme. We pick a uniformly distributed point from the

three dimensional unit ball by choosing three independent uniformly distributed

random numbers p1, p2, p3 ∈ [0, 1) and rejecting every triple with p2 := p2
1+p2

2+p2
3 ≥

1. Similar to the case of translational moves, we maintain three parameters ∆1,∆2

and ∆3 to scale the components of ~p. Thereby, we effectively choose the rotational

axis out of an ellipsoid instead of a ball. We generate a quaternion

δq =
1√

1 + p2
(1, p1, p2, p3) (10)

which defines a rotation about the axis (p1, p2, p3). The magnitude of the rotation

relates to the length of ~p which is controlled by the parameters ∆i, i = 1, . . . , 3.

Given a trial rotation δq ∈ R
4, the potential change ∆U is given by

∆U = U(q · δq) − U(q), (11)
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where q ∈ R
4 is the old orientation.

4.3. Prevention of Boxes from Escaping

As we have seen in Sect. 2.2, the penetration depth p does not suffice to model

the wall potential. We are interested in the restricted penetration depth pR, but

cannot compute this value due to the deficiencies of the representation of the trunk.

Actually, it suffices to distinguish the cases p = pR ≤ 1

2
lmin and p < 1

2
lmin < pR in

Fig. 6 where lmin is the shortest side length of a box. In the following we describe

an approach to overcome this problem.

The goal is to develop a predicate called outside(~c), that reflects the position

of a box with center ~c with respect to the trunk. The predicate should return false

for boxes completely contained in the trunk or for boxes with small restricted

penetration depth. If the restricted penetration depth exceeds a certain threshold,

the predicate should return true. This predicate is used to distinguish both cases

in the definition of the wall potential UW .

We use a three-dimensional grid that segments the bounding box of the trunk

into cells. The purpose of the grid is to approximate the space with respect to the

trunk. Each grid cell belongs to exactly one of three sets, namely interior, boundary

and exterior cells. The spacing d of the grid is discussed later.

The set of boundary cells can be easily determined by computing the intersec-

tions between grid cells and the triangular mesh of the trunk. Next we want to

identify the interior and exterior cells. We compute connected components of grid

cells not yet identified as boundary cells. For this computation, cells are viewed as

nodes of a graph and cells next to each other are handled as adjacent nodes.

In order to ensure that regions in the interior and exterior of the trunk do not

end up in the same component, we demand that the holes in the triangular mesh

do not exceed a rectangle of size d × d. All cells of the connected component(s)

that contain(s) the outmost layer of the grid cells clearly belong to the outside (or

boundary) and are marked as such.

Since our model is not a manifold we might still have two or more components

not yet assigned to one of the three sets. Therefore we require the user to specify

one point in the interior of the trunk. The cells in the corresponding component are

marked as inside, all other remaining components (if any) are marked as outside.

Given this data structure, we implement the predicate outside(~c) as follows.

We return true if the center ~c is not contained in the bounding box. Otherwise, we

look up the grid cell corresponding to the query point ~c and return true iff the cell

is marked as boundary or outside.

What remains to be discussed is the choice of the spacing parameter d and its

influence on the predicate with respect to the restricted penetration depth of a box.

This relation is established by the following proposition.

Prop 4.1. Given a grid with spacing d > 0 and a box with center ~c and mini-

mum side length lmin. If outside(~c) returns true, we have for the the restricted
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penetration depth pR

pR ≥ 1

2
lmin − d

√
3. (12)

Proof. Consider the case that the cell that contains the center ~c of the box is

marked as boundary (see Fig. 12). The distance between ~c and the boundary is at

most the diagonal of the cell, which is d
√

3. Thus the restricted penetration depth

is at least 1

2
lmin − d

√
3.

lmin/2

d

outside

inside~c

≤ d
√

3

pR

boundary

Figure 12. Box center lies in boundary cell

Now consider the case that the cell that contains the center ~c is marked as

outside (see Fig. 13). The restricted penetration depth pR is greater or equal than

the distance of the center ~c to the boundary of the box, hence pR ≥ 1

2
lmin.

The case that the center ~c is not contained in the bounding box can be handled

as the second case for a grid augmented with sufficient outmost layers of cells

marked as outside.

The contraposition yields that our predicate reports false for pR < 1

2
lmin −

d
√

3. Additionally, the predicate returns true for pR > 1

2
lmin (since the center

of such a box lies in a cell marked as boundary or outside). Hence the spacing

parameter d adjusts the interval of “uncertainty” in which the result of the predicate

is not solely related to the relative position of the box and the trunk, but also to

the alignment and orientation of the grid cells. The smaller the parameter d, the

smaller this interval.

On the other hand, one has to take into account the complexity of the grid

which scales with d−3. Another reason that prevents arbitrary small values of d
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d

outside

pR

lmin/2

inside

boundary

~c

Figure 13. Box center lies in outside cell

is the requirement that the triangular mesh may not contain holes larger than a

rectangle of size d × d.

4.4. Creation and Destruction of Boxes

As of yet, we have only described the simulation of ensembles with a constant

number of boxes. We have not yet explained how to solve the maximization problem.

The missing thing is the creation of boxes and the destruction of prematurely

created ones. From a physical point of view, the simulation of a grand canonical

ensemble, i.e., an ensemble with creation and destruction of particles, would fix this

issue.

In many physical systems, we have particles entering and leaving the region of

interest depending on external conditions. The dependency is expressed in the so

called chemical potential, that briefly speaking describes the energy that is nec-

essary to add a random particle to the system or the change in the energy if a

random particle leaves. Therefore, the higher the chemical potential is, the smaller

is the probability of accepting the creation of particle at a random position. The

interested reader may have a look at Chapter 5.6 of 16 for the physical background.

Intuitively, the chemical potential increases with the density of the particles in the

system.

However, it would be physically nearly impossible that the simulation of such

a grand canonical ensemble comes up with a valid optimal solution. Since we deal

with close packings, i.e., packings with a very high density, the chemical potential

for such a setting would be very large, and hence the probability to create a new

box would be vanishing low, or on the other hand, the destruction of boxes would

occur too often.

Nevertheless, we can modify the creation procedure so that it finds promising

positions and orientations for new boxes and inserts them there. An example for
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such a promising position can be seen in Fig. 14. Since we may allow temporarily

greater penetrations of the trunk than the threshold in the Simulated Annealing

approach, positions for new boxes may exist due to missing cells in the discretiza-

tion which is constrained by theses thresholds. Furthermore, promising positions

may originate during the simulation, because a nearby box has been destructed or

rearranged.

Figure 14. Promising position

Creation In each iteration step we pick a box uniformly at random and investigate

its surrounding for promising positions of new boxes. More precisely, we construct

six candidate boxes and evaluate their contribution to the potential function.

Each candidate for a new box is obtained by mirroring the selected box at one of

the six planes defining its boundary. Candidates outside the trunk as decided by our

predicate outside are rejected. We also reject candidates that exceed thresholds

for intersection volume, interpenetration depth and penetration depth. Remaining

candidates (if any) are accepted as new boxes.

Next we describe an additional step modifying our approach above. Consider

a candidate that has been obtained by mirroring the selected box at a plane that

contains one of its faces of size 200mm ×100mm. Imagine an obstacle that interferes

with the candidate just slightly below our threshold. Consequently, the candidate

would be created. But if the subsequent relaxation step fails to improve the situa-

tion, the just created box is likely to be destroyed again. The heuristics would cycle

between creation and destruction of a box at that position.

Therefore we rotate the candidate and the original box by 90 degrees such that

they cover the same space together, but changed their orientation. By triggering

the rotation randomly, we increased the chance that a box may escape out of this

situation during the relaxation. A similar rotation is performed for candidates that

originate from mirroring the selected box at the planes that contain the faces of size

200mm × 50mm. No such rotation is possible for the remaining case with respect

to the face of size 100mm × 50mm. Candidates of this case are seldom accepted
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anyhow.

Destruction In each iteration step we consider the worst box, i.e., the box that

contributes most to the potential. We simply remove the box with a probability

proportional to its contribution to the potential.

4.5. Eliminating the Heating Process

The standard simulated annealing approach requires that the system is brought into

equilibrium with a sufficiently high temperature at the beginning. Thereby, one can

guarantee the convergence of the method assuming a decreasing temperature that

is logarithmic in time17.

Since this implies an exponential running time, one has to use faster schedules,

e.g., a geometric one. But thereby, we experienced lots of canting of the boxes like

depicted in Fig. 15.

Figure 15. Canting of boxes

Therefore, we came up with the idea to use a combinatorial solution as starting

configuration in connection with our creation procedure. In the following, we give

a model of the configuration space that explains the success of our method.

Let us assume that we only have uniform objects to pack like in our real world

problem. Therefore, the potential does not change by swapping the identity of

two boxes. Hence, it is sufficient to consider only one representative configuration

x = (s1, . . . , sn) for all its n! permutations where n is the number of boxes and si

the set of parameters that describe one box.

If we consider the states si, sj ∈ R
6 of two boxes, then their “distance” cannot

be arbitrarily close in a valid packing. Therefore, we may assume that each state

occupies a certain volume of the configuration space. Since we are interested in a

maximal packing, i.e., a packing with a high density of states, an optimal solution

would be a close packing.

Our heuristic consists of choosing a starting configuration in a way that yields a

closest packing because thereby we can map each state of the starting configuration

to one state of an optimal solution such that each distance is bounded. Therefore, an
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optimal solution

starting config

occupied space

Figure 16. Model of states in the configuration space

appropriate starting configuration would be a combinatorial solution to the discrete

model with the additional constraint that it is dense in its interior.

Since the starting configuration is “near” an optimal solution but does not match

exactly, we have an additional requirement that the combinatorial solution should

be “flexible” enough, i.e., rather homogeneous in the orientation of the boxes.

Note that we still follow a cooling schedule in the course of our algorithm. But

by using the combinatorial solution, we are allowed to start at a lower temperature

that does not lead to a randomization of the whole starting configuration and the

related canting problems.

5. Evaluation

The complete project has been implemented in C++ and is portable across today’s

major system platforms. Several external libraries have been used supporting the

implementation of the user interface, the visualization part as well as providing

some low-level algorithms and datastructures. Since our system is employed in an

industrial production environment, ease-of-use has been a major requirement of our

industrial partner.

Here we briefly report on the results we achieved with our approach of the

Specialized Grand Canonical Simulated Annealing heuristic.

The plain results are summarized in Tab. 1 where we oppose the values achieved

by a human expert, our best combinatoric solutions, and the novel approach which

is abbreviated by SGCSA. Just to get an impression, we also added an approximate

value for the continuous volume in the last column. This value is the average of an

inner and outer approximation by a cubic grid with a spacing of 6.25 mm or 12.5

mm and has been rounded to a precision of 5 liters.

The labels A, B, C, and D denote different car models. The model ’C w/ extras’ is

similar to C, but has a smaller volume due to control units for additional equipment

like air-conditioning.

Recall that the quality restrictions of our industrial partner require us to achieve

least 99% of their best manual packing and not more than 10 liters less. One can see

in Tab. 1 that for models A and B, our implementation even outperforms the ex-
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expert combinatoric SGCSA continuous

A 62 l 61 l 64 l ≈95 l

B 80 l 80 l 81 l ≈120 l

C 513 l 507 l 510 l ≈595 l

C w/ extras 480 l 475 l 479 l ≈555 l

D 499 l 491 l 493 l ≈595 l

Table 1. Some test cases

pert’s solution. All solutions were computed within a time-frame of one day allowed

by our industrial partner; since no user interaction is required after initializing the

optimization process, this fits very well into the design process.

6. Conclusion

We have presented an industrial-strength system that enables car manufacturers

to estimate reliably the volume of car trunks even at an early stage of the design

process. Compared to the previous system8, the main novelty is the possibility to

place boxes in arbitrary orientations and positions. The lack of the latter has shown

to be a weakness of the old system when it was evaluated in the actual production

environment. The new system has been certified using a large number of different

trunk types and proven to be of industrial strength. It is currently being installed

for use in the actual design process of the car manufacturer.
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